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Abstract The differentiability of a stochastic process has a direct relationship
with the differentiability of covariance function. Space-time geostatistics have had
recently a great development, and new families of covariance functions have been
proposed following different methodologies. However, although they are positive
definite, not all of them represent the reality of a particular phenomenon of study.
Therefore, the analysis of other properties is necessary before choosing the suitable
model. Here we presented a review of the concept of differentiability of both,
space–time covariance models and stochastic process, and its implications on
correlations of linear combinations underlying observations, specifically, in the
increments. We analyze the change of the function of covariance from the origin
and as lag grows. The predictions depend on the values that the covariance function
takes. So, by using the concept of smoothness of a covariance function, which
can be considered as the geometrical view of the differentiability, we determine
some characteristics of the predictions obtained with these covariance functions.
We propose two ways of measuring the smoothness of any covariance function.
For iIlustrative purposes, we apply them to purely spatial covariance functions and
to several space-time covariance models, and we show a characterization of these
models according to their smoothness.

Martha Bohorquez
Department of Statistics - National University of Colombia,
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1 Introduction

[3] shows that these covariance functions that are not smoother away from the
origin than at the origin, generate discontinuities in some correlations of linear
combinations of the stochastic process Z, specifically in the correlations between
increments. Proposition 1 shows a characterization of certain types of covariance
models. However, several covariance models are analytic and do not accomplish
with the hypothesis of this proposition. It is then, is necessary to find a way to
measure smoothness, available for any covariance model. As known it is, the kriging
predictor is a linear combination of the observations. The increments have a special
interest because, we can observe the change of the covariance function when a
lag grows from the origin and how this behavior affects the predictions. We use
a concept of smoothness, which can be considered as a geometric vision of the
differentiability. We thus propose to measure the smoothness of surfaces generated
by covariance functions to analyze the continuity of the associated process, which
will have a direct impact on predictions.

We now present the definitions of the derivates of a stochastic process, and the
theorem that shows the relation between them and its covariance function, [8], which
are the basic elements for Proposition 1.

Definition 1 (Derivate of a stochastic process).
Let Z(x)∈Rn be a stochastic process with covariance function depending on the

index set C(x,y); the associated gradient Ż(x) is a vector in the space Rn defined in
a Cartesian coordinate system by its components:

Żi(x) =
∂Z(x)

∂xi
= lim

h→0

Z(x+hei)−Z(x)
h

(1)

where ei is a unitary vector in the i− th direction and h is a scalar; i = 1, ...,n.
The general derivate of order m of the process Y, is

Zm(x) =
∂ |m|Z(x)

∂xm1
1 ...∂xmn

n
(2)

where |m|= ∑n
i=1 mi.

Theorem 1. Let Z(x) ∈ Rn be a stochastic process with covariance function C and
expectation E(Z) differentiables. If

∂ 2

∂xi∂yi
C(x,y) (3)

exists and is finite for all i = 1, ...,n at the point (x,x), then Z(x) is mean-square
differentiable in x, and (3) is the covariance function of the process Żi(x).

Thus, for a stationary random field, the behavior of its covariance function in the
neighborhood of the origin, allows to determine its second order properties. This
concept can be generalized to derivates of any order m. If the derivate
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∂ 2|m|C(x,y)
∂xm1

1 ...∂xmn
n ∂ym1

1 ...∂ymn
n

(4)

exists and is finite for all i = 1, ...,n at the point (x,x), the process Z(x) is
mean-square differentiable in x, and (4) is the covariance function of the process
Zm(x).

For m ≥ 0, and if Z(x,y) is m times mean-square differentiable in its first
coordinate, and we write Zm(x,y), for this m−th mean-squared derivate, [3] defines
the autocorrelation of the increments for small lags as:

ρm
ε (x,y) = corr (Zm(ε,0)−Zm(0,0),Zm(x+ ε,y)−Zm(x,y)) (5)

and let ρm be its limit when ε → 0.

Proposition 1 (Stein, 2005). [3]
Suppose that Cm is a continuous function on R2, 0 < α1 < ... < αp < 2,

C1,C2, ...,Cp are even functions on R, with C1(0) ̸= 0, such that

Cm(x,y) =Cm(0,y)+
p

∑
j=1

C j(y)|x|αj +Ry(x) (6)

where, for any given y, Ry(x) = O(x2) as x → 0, and Ry(·) has a bounded second
derivative. Then

sup
x∈R

lim
ε→0

∣∣∣∣C1(y){|x+ ε|α1 −2|x|α1 + |x− ε|α1}
2C1(0)εα1

−ρm
ε (x,y)

∣∣∣∣= 0

and ρm(x,y) exists for all (x,y) with

ρm(x,y) =

{
C1(y)
C1(0)

if x = 0

0 if x ̸= 0

Under the hypothesis of stationarity, all covariance functions are smooth away
from the origin. Then, the important issue is to determine if the function presents
the same behavior near the origin, at neighborhoods of 0. Besides, it is important to
look for ridges, that is for local extrema.

2 Space-time processes

A Space-time process is a stochastic process {Y (s, t) : (s, t) ∈ Ds × Dt}, where
Ds ×Dt is the space-time index set. Ds ×Dt ⊆ Rd ×R with Rd for the space and R
for the time. When Ds is continuous, the process is called a geostatistical process.
This approach fits models based on a finite number of Space-time observations.
A general form of expressing the space-time observations of the phenomenon of
interest is, [6],
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Y ≡ (Y (si; ti j) i = 1, ...,m j = 1, ...,Ti) (7)

• {s1, ...,sm} are the m known spatial locations,
• Ti is the length of the time series available at each of the m locations.

In this work, we assume that the covariance function is stationary in space
and time. That is, given that Var(Y(s; t)) < ∞, ∀s ∈ Ds and ∀t ∈ Dt , the mean
is constant and the covariance function C, only depends on the space-time lag,
(si − si′ , ti j − ti′ j′):

E(Y(s, t)) = µ and Cov(Y(si, ti j),Y(si′ , ti′ j′)) =C(h,u) (8)

where h = si − si′ , u = ti j − ti′ j′ . Althought the covariance function must be
nonnegative definite, we only consider the positive definite case. That is, for any
finite number m of space-time locations

(s1, t1),(s2, t2), . . . ,(sm, tm)

and any set of complex numbers, {a1,a2, . . . ,am} with m ∈ Z+, C is such that

m

∑
k=1

m

∑
k′=1

akak′C(sk − sk′ ; tk − tk′)> 0 (9)

To ensure positive definiteness of C(·, ·), we often use models which belong to a
parametric family C0, where all members satisfy (9).

Cov(Y(si, ti j),Y(si′ , ti′ j′)) =C0(si − si′ ; ti j − ti′ j′ |θ) (10)

where C0 is a positive definite function for each parameter vector θ ∈Θ ⊂ Rp.
A tool commonly used to reduce the number of parameters is to use a separable

structure. In a space-time process, separability means that the modeling of space and
time covariance, can be made individually. That is, the space-time covariance matrix
∑s,t

Y can be the Kronecker product between the purely spatial covariance matrix,
and the purely temporal covariance matrix ∑s

Y⊗∑t
Y. Cs,t(h,u) = Cs(h)Ct(u). This

method avoids the difficulties with the calculus of the inverse space-time covariance
matrix.

Although this approach is computationally simpler, does not take into account
the space-time interaction. In most of the cases, it exists that interaction: the effect
of a change in the spatial location is different for each time; that is, the spatial
dependence model varies with time. Models taking into account this interaction
are called nonseparable. There are several options of parametric families: [1] built
stationary nonseparable space-time covariance functions by finding the inverse
Fourier transform of spectral densities. Specifically, [1] considered functions of the
form

C(h,u) =
∫

exp{ih′ω}ρ(ω,u)dω (h,u) ∈ Rd ×R (11)
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where ρ(ω,u), u ∈ R, is a continuous positive definite function for all ω ∈ Rd .
However, nonseparable models could emerge as special cases. Therefore, this
method requires Fourier transform pairs having a closed form.

[2] proposed a family of space-time covariance functions which unlike the former
does not depend on the existence of Fourier Transform. This method is given by
theorem 2.

Theorem 2 (Gneiting’s theorem). Let φ(r), r ≥ 0, be a completely monotone
function, and let ϕ(r), r ≥ 0, be a positive function with a completely monotone
derivate. Then

C(h,u) =
σ2

ϕ(u2)d/2 φ
(

∥h∥2

ϕ(u2)

)
, (h,u) ∈ Rd ×R (12)

is a space-time covariance function.

There are several other methodologies to build nonseparable space-time
covariance functions. To mention some, [4] proposed a product-sum model,

Cs,t(h,u) = aCs(h,θ)Ct(u,θ)+bCh(h,θ)+ cCt(u,θ) (13)

where a,b,c are nonnegative coefficients and Cs(h,θ) and Ct(u,θ) are covariance
functions in the space and time, respectively.

[5] presented another method by using the integration of the product between
Cs(h,θ) and Ct(u,θ) with respect to measure µ over the space of the parameters Θ .

[7] obtain a valid model with the convex sum:

C(s,t)(h,u) = ϑφ(∥h∥)+(1−ϑ)φ(|u|) (14)

where ϑ ∈ [0,1]. This model is valid given that θ < 7−ε
1+5ε and ε < 7.

Besides, [3] presented a method to build nonstationary models by using the
Matern covariance function. Nevertheless, in general, the closed expressions for the
covariance function rarely are found using this method.

3 Fundamental forms and curvatures

We now present some concepts of differential geometry, which are basic for the
definitions of smoothness measures.

The first fundamental form allows to measure lengths of curves, angles between
two curves in a point on the surface and areas of regions. Let S (w,v) be a
parametrized surface and S (w(l),v(l)) be a regular curve over it, with arc length s,
given by the next integral

s(l) =
∫ l

l0

√
S ′(ς)dς (15)
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where

S ′(l) = Sw
dw
dl

+Sv
dv
dl

(16)

The first fundamental form I is always positive,because it is the square of the arc
length (15):

I =
(

ds
dl

)2

= E
(

dw
dl

)2

+2F
dw
dl

dv
dl

+G
(

dv
dl

)2

(17)

where

E = Sv ·Sw, F = Sw ·Sv, G = Sv ·Sv (18)

Besides, EG−F2 > 0 because

∥Sw ×Sv∥= EG−F2 (19)

The second fundamental form provides information about the deviation of the
surface from its tangent plane in the neighborhood of the point of tangency, [9].

The unitary normal vector to the surface is given by

n =
Sw ×Sv

∥n∥
(20)

for each (w,v) point, and the second fundamental form is defined as the quadratic
form

II = Lw2 +2Mwv+Nv2 (21)

Where the coefficients L, M and N are defined as follows:

L = Sww ·n, M = Swv ·n, N = Svv ·n (22)

II approximates the perpendicular distance from the tangent plane to the point
of surface fixed by S (w,v) for small values of w and v. II measures in the
neighborhood of a point of tangency, the deviation of the surface from the tangent
plane.

In order to find a more precise information, based on the fundamental forms and
its coefficients, curvature measures have been proposed. The normal curvature can
be thought as the rate of change of the direction of each curve over the surface;
therefore, it is the quotient between the first two fundamental forms:

kn =
II
I

There is a pair of orthogonal directions for which kn reach a maximum and
minimum values, k1 and k2. They are called the principal curvature in a point p.
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The product between them is called the gaussian curvature (K), and its mean is
called the mean curvature (H),

K = k1k2, H =
1
2
(k1 + k2) (23)

These are related with the first two fundamental forms through the next
equivalences:

K =
LN −M2

EG−F2 , H =
EN +LG−2MF

2(EG−F2)
(24)

4 Smoothness measures for surfaces

[10] proposed two smoothness measures, based on the curvatures and fundamental
forms, for assessment of the quality of surface construction in computer graphics.
Here, we use those measures in order to evaluate the smoothness of the surface
generated by the covariance function, mainly near the origin and with this result,
determine the characteristics of the associated random field.

The second-order smoothness is defined as

λ (∥h∥,u) =
(

1
π

∫ π

0
k2

n(α)dα)

)1/2

(25)

which integrates the square of the normal curvature for all directions on the tangent
plane; therefore, it measures the trend of the function to bend itself. So, lower
values appear when the function is smoother. The angle α is measured from
the first principal direction; kn is a function of α according to Euler’s formula:
kn(α) = k1 cos2 α +k2 sin2 α .

There is a simpler way to calculate (25) in terms of the principal directions.
Replacing Euler’s formula and by using (23), we have

λ 2(∥h∥,u) = 3
2

H2 − 1
2

K (26)

and due to the equivalence , the second-order smoothness can be given in terms
of its coefficients of fundamental forms,

λ 2 =
3G2L2 +(4M2 +2LN)(EG+2F2)+3E2N2 −12FM(EN +GL)

8σ4 (27)

which is an expression easier to compute.
Another option is the third-order smoothness [10], which corresponds to the total

variation of the normal curvature at each point, in all directions of the tangent plane.
This measure is defined as
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Λ(∥h∥,u) =
(

1
π

∫ π

0
(k′n(αl))

2dαl)

)1/2

(28)

which integrates the square of the variation over all possible directions. Λ(∥h∥,u)
can be given in terms of the first fundamental form E,F y G and the coefficients
P,Q,S,T which express the variation of the normal curvature in terms of the arc
length:

P = Swww ·n+3Sww ·nw

Q = Swwv ·n+3Swv ·nw +S aww ·nv

S = Swvv ·n+2Swv ·nv +Svv ·nw

T = Svvv ·n+3Svv ·nv

The easier way to calculate the third order smoothness, is replacing all
coefficients to obtain:

Λ 2 =
1

16σ6 [5G3P2 +5E3T 2 +9G(EG+4F2)Q2 +9E(EG+4F2)S2

+

6(EG+4F2)(GPS+EQT )−2F(3EG+2F2)(PT +9QS)−30F(G2PQ+E2ST )]

This measure Λ shows the velocity of change of smoothness.

5 Results

The surface generated by the smoothness measures allows to determine the different
levels of smoothness corresponding to each space-time lag and to detect the possible
existence of ridges. The smoothness measure functions take its maximum values at
the values of h and u for which the smoothness of the covariance function is lower,
whereas they take the minimum values at the lags for which the covariance function
is smoother. When these are ridges, we find a constant behavior.

5.1 Spatial covariance functions

To illustrate the smoothness measures (25), it is initially applied to some cases in
R2, see Figure 1.
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• Covariance model of Matern. v > 0, θ = (σ2,a,v), a > 0

C(h) =
σ2

2v−1Γ (v)
(∥h∥/a)vKv(∥h∥/a) (29)

respectively, where Kv(·) is the modified bessel function of order v. This model
is valid given that v > 0. The parameter v is a shape parameter which determines
the analytic smoothness of the underlying process, [11].

• If v = 1
2 the Matern model agrees with the Exponential model

C(h) = σ2exp{−∥h∥/a} (30)

• When v → ∞ the limit case of Matern model is called the Gaussian model

C(h) = σ2exp{−(∥h∥/a)2} (31)
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Fig. 1 Second order smoothness for spatial Exponential and Gaussian covariance models.
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Fig. 2 Second-order
smoothness for spatial Matern
covariance models. Notice
that when v = 0.5 the model
agrees with the Exponential
model. From v > 0.5, the
models show the same
behavior of Gaussian model,
with minimum smoothness at
the origin and local maxima.
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The λ function of an exponential model, shows lack of smoothness near the
origin and higher smoothness as ∥h∥ increases. That is, the exponential covariance
model is not smooth at the beginning and reaches its maximum smoothness
gradually. This is the ideal behavior of smoothness for a covariance model according
to [3]. The maximum value and the ∥h∥-value corresponding depend of a and σ .
For the other hand, the spatial Gaussian covariance model reaches its minimum
smoothness at the origin, when its lambda function takes the maximum. The lambda
function for this model, has a zero when h = ± a

√
2

2 , that is, at this point there is a
maximum smoothness, and then starts to grow up, reaching a local maximum before
reaching again highest smoothness. So, the Gaussian covariance is not smoother
away from the origin than near the origin. These behaviors are generalized in the
Matern function, see Figure 2 until v = 0.5, the behavior is the same like the
exponential, and for v > 0.5 the behavior is like the Gaussian. Then, for v > 0.5 the
underlying processes have to be measured continuously, which in general, cannot be
done in the practice, and the observations which strongly affect the prediction, are
inside a too small neighborhood from the origin. Besides, the observations with a
lag around the local maximum have more importance than others, which are nearest
to the origin. Those are the processes that [3] considers unrealistic from a physical
point of view.

5.2 Space-time covariance functions

For space-time covariance functions, S corresponds to the surface associated with

C(∥h∥,u) : R2 → R

and the parametrization used is

(∥h∥,u,C(∥h∥,u)) (32)

The interest is to determine if the covariance function near to the origin is as
smooth as away from the origin, or if the function has ridges. The space-time
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Exponential and Gaussian models, have the same properties than their marginal
functions in each of the axes. See Figure 3. These models are given by

C(∥h∥,u)=σ2 exp
{
−∥h∥

a
− u

b

}
and C(∥h∥,u)=σ2 exp

{
−
(
∥h∥

a

)2

−
(u

b

)2
}

(33)
where σ2 > 0 is the variance of space-time process; a > 0 and b > 0 are the

parameters of space and time, respectively,

Exp(σ = a = b = 1) Exp(σ = 1,a = 0.1,b = 1) Gauss(σ = 4,a = 1,b = 1) Gauss(σ = 4,a = 1,b = 2)

a. b. c. d.

Fig. 3 Second order smoothness for space-time Exponential and Gaussian covariance models.

The behavior of the covariance families in [1], examples 1, 2 and 3, have ridges
for some combinations of parameters, in a similar way than the Gaussian covariance.
However, the smoothness of example 4 in [1], is like the exponential model. The
Gneiting covariance models, [2], have basically two kinds of behaviors as we can
observe in Figure 4. This is the second order smoothness for the Gneiting model
obtained when the functions in 34 are φ and ϕ in Theorem 2,

φ(r) = e(−crγ ) and ϕ(r) = (1+arα)β (34)

with c > 0, a > 0, 0 < γ ≤ 1, 0 < α ≤ 1 y 0 ≤ β ≤ 1. The resulting covariance
parametric family is

C(h,u) =
σ2

(1+au2α)
βd
2

e
(
− c∥h∥2γ

(1+au2α )βγ

)
(35)

where a y c (nonnegatives) are scaling parameters of time and space, respectively.
The α and γ parameters control the smoothness of function and the parameter β
corresponds to the space-time interaction; σ2 is the variance of space-time process.

The function is smoother at the origin than away the origin 4a., or the second
behavior is observed in 4b. and 4c. where although the smoothness is increasing
from the origin, only has variation in an infinitesimal neighborhood of the origin,
and then is constant. Notice that the plot in 4c. is made for a very small lags.
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Gneiting(γ = 0.2) Gneiting(γ = 0.6) Gneiting(γ = 1)

a. m b. c.

Fig. 4 Second order smoothness for space-time Gneiting covariance models. γ is the interaction
parameter

6 Conclusions

The smoothness functions λ allow to identify the maximum distance to which the
observations have strong effect on the prediction. In addition, when the covariance
function has ridges, observations away from the origin can have much influence
on the prediction. Then, first of all, it is necessary to determine if the underlying
process can have the continuity that the covariance model implies, and secondly
evaluates the real possibility to observe that process. In other cases, the weights in
the prediction only correspond to lags with negligible effect on the prediction. We
include here the most known covariance functions and it was enough to illustrate the
different kinds of behavior. However, the only requirements to use the smoothness
measures is the existence of the second derivate of covariance functions. The
calculations and graphs were made with the software R and Mathematica 8.0.
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