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Abstract The algorithm for conditional simulation based spatial high-order
statistics is applied to a drilling dataset obtdifiem a structurally complex gold
deposit, the Apensu deposit in Ghana. Spatial bigler statistics allow capturing
nonlinear spatial features of the gold mineralmatithat variograms and
covariances cannot. Since robust spatial high-ostitistics cannot be inferred
only from scattered samples, they are borrowed feotnaining image. In this
case, sequential Gaussian simulation with localiogaams within domain
boundaries is used to build a training image. Atedént locations HOSIM uses
the spatial high-order statistics to approximaten-@aussian distributions of
possible values conditioned by neighboring data éffiect of sampling clustering
in the probability distribution and its statistids taken into account by
incorporating declustering weights in the inferen€éw and high-order statistics
required by high-order simulation. The resultinglizations reproduce the cdf and
the low-order statistics of data and tend to apgndhe high order statistics of the
training image. They also reproduce the gold-richjan and well sampled
structures. The reproduction of small structured andersampled is hindered by
the use of a Gaussian based training image ansifiétude of their gold grade
populations to those of the background host rock.

I ntroduction

Structural processes, such as faulting and folding,often the major controls of
the spatial distribution of grades in diverse dégo&rades are higher within and
in the proximity of faults that act as mineralizetifeeders and tend to fade away
from them. Moreover, mineralized rock layers aretenf bended and
discontinuous. The resulting structural settin@afeposit is often complex and it
is seldom fully mapped, whereas measurements ofegrare limited in number.
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This calls for the characterization of the grad&riiution uncertainty in mineral
resources models. A common approach is to desdliberange of possible
scenarios by the ensemble multiple realizationseggad using Sequential
Gaussian Simulation (SGS). However, besides theatinspatial continuity
imposed by the variogram model, SGS realizationswslthe characteristic
maximum entropy pattern [1] resulting from the atitmp of the Gaussian model
for the distribution of continuous values. In cérteases, different patterns of the
spatial distribution of grades can be associatedifferent geological units. In
such cases, the common practice is to use categemulation techniques for the
modeling of the geological units in combination wBGS for the modeling of
grades within the units. Among the commonly usethnéues for the modeling
of categorical variables for mining applicationse aSequential Indicator
Simulation [2], Plurigaussian Simulation [3] anidhslation based on multiple
point statistics [4-6]. Proceeding in this way alfointroducing complex spatial
features in the simulated models.

This paper presents the algorithm of simulationedasn spatial high-order
statistics, or High-Order Simulation (HOSIM) [7, &8s an alternative to the
combined approach for the modeling of grades. 8bhigh-order statistics, such
as moments and cumulants, are able to captureimesrland high-order spatial
features from data and training images [9, 10]eé&¢h location in a grid, HOSIM
uses these high-order statistics to approximatéota non-Gaussian distributions
conditioned by neighboring data values. The rasgltiealizations reproduce not
only the histogram and covariance of the originafiad but also the high-order
statistics of data and the training image. The sextion contains an overview of
the theory of spatial high-order statistics andrthise for fitting non-Gaussian
multivariate conditional distributions in a sequahtsimulation framework.
Weighted high-order moments are presented as a twagccount for data
clustering when inferring the non-Gaussian conddiodistributions. A dataset
consisting of drill-hole samples and a geologicabded is used to build a
continuous training image. HOSIM integrates the @asiand the training image
for the inference of high-order statistics. Usimgstinitial information, multiple
HOSIM realizations are generated. The capabilityH®DSIM realizations to
reproduce the low and high-order statistics of itiigal information, which is a
validity test for any geostatistical simulation med [11], is assessed. The last
part of this paper discusses the potential andeourlimitations of this new
simulation approach and the undergoing work aimddprove this algorithm.

Simulation Based on High-Order Statistics

This section provides a brief introduction to higitiler spatial statistics and their
use for approximating multivariate non-Gaussiantrithistions. The HOSIM



algorithm is presented as an implementation of tiwory for the simulation of
non-Gaussian variables in a sequential framework.

High-Order Spatial Statistics

Consider a spatial random functid{u) defined over a domaih andu as a

location within that domain. The vectadhs, ---, h, define a templaté;i‘j;"'h" of
n+1 pointsug,uy+hy,...,us+h,. The set of set random variables
corresponding to the points in the template df@,) =Z,, Z(u, +h;) =
Zy,~Z(u, +h,) =Z,, A high-order spatial moment for this arrangemant

defined by the integration

Blzg -zt zi) = [ aoat st fyom ), (1)
pn+1
with z = (24,21 -*,2,). The experimental high-order spatial moments are
obtained by the average of the product of the watygez, -+, z, for all instances
where the arrangement of sample locations defiyed,bu, + h,,---,u, + h,, is
replicated. Sampling of mineral deposits often lisstered in the richest areas.
This results in biased grades distributions andis$izs. Spatial declustering
methods are used to assign higher weights to emls&amples and lower weights
to samples in densely samples areas. These weightincorporated in the
estimation of declustered distributions and itstigias. Following this idea,
declustered high-order moments can be inferringnbgrporating multiple-point
declustering weights. The proposed form of multiptént declustering weights is
obtained by the geometrical average of the indaiddeclustering weights,

w;, i =0,..,n assigned to each sample in a temp’lﬁﬁ"““:

Wyg,1,..n = W[ZO:Z1: e Zn] = n+1\/ WoWyq = Wh. (2)

If the template T,:'j‘l‘“‘h” has Ny,..n, replicates within the domain, the
corresponding weighted experimental high-order maroan be inferred by
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Moments can be expressed as combinations of cutsut#nthe same and
lower order, and viceversa [12]. For a zero-meardoan function, the spatial
cumulants from order one to four are given by



Cl(ZO) = E[ZO] =0,
C2(Zo, Z7) = C(hy) = E[ZoZ4],
C3(Zo, 21, Z,) = C3(hy, hy) = E[ZyZ,2,], (4)

C4(Zo, Z1,Z5,Z5) = C5(hy, hy, hy) = E[ZyZ1Z,75] —
E[ZyZ,]E[Z,Z5) — E[ZyZ,E[Z,Z3] —
E[ZyZ5]E(Z,Z,].
Note that the first cumulant is the mean and theose is the spatial
covariance. Thus, spatial cumulants can be undststs the multiple-point
generalization of the covariance.

Approximation of a Non-Gaussian Multivariate pdf

In conditional simulation, the distribution of valsiat any unsampled location is
conditioned by the input information, particularly datasetd, = {z(u,) =
z,, a = 1,..,n}, and previously simulated nodes. If the initiahditioning data is
4, = {d,}, the conditional pdf at a locatian, is given by

f,(zg, 21, e Zn)

fz4(Zo|80) = (5)

fA £7(20, 21, v Zn)dzg

With A as the domain whergis defined. Once the conditional pdf is built, a
realization is subsequently drawn from it. This hesimulated valuez', is added
to the dataset. Thus, the new conditioning dataistnofd, = {d,,} U {z', } and
is used to condition the pdf at a second node. fitdsess continues by following
a random path until all nodes of the predefined gre simulated [13] .

The main problem is to infer the multivariate dtstition in the numerator of
expression ( 5). In Sequential Gaussian Simulafaninstance, the multivariate
pdf is efficiently modeled by a multiGaussian dmatition, which is fully defined
by a covariance matrix and a vector of local medms different fashion, high-
order simulation uses high-order statistics and ebelge polynomials. For
example, consider an unsampled locatigrand two conditioning data,; andz,,
the corresponding declustered multivariate pdivemy by [14]

w(2,, 21, 23) f7(20, 21, 23) (6)
Elw(z,,21,22)]
If the marginal pdfs are defined iA =[—1,1] , which usually requires

rescaling the original values, the multivariate pdh be expressed as a series of
Legendre polynomials [7]:

fZ(W)(ZO!Zl!ZZ) =



0G0 z2) = D7) 18 Bu(20)Pa(@)Pa(z) (7)
=0 m=0n=0
Lgff,f‘n are the weighted Legendre coefficients &), o = [, m, n, are thea-

order normalized Legendre polynomials, such as:

2a2+ 1 Pa(z)_ (8)

pa(z) =

The first two Legendre polynomials am)(z) =1 and P;(z) =z. The
following derivation allows obtaining Legendre pobmials of any ordesr > 0,

a

T 2aqldze

Po(2)

[(z2—1)"]= ) a;,z% forz € [-11]. (9)
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The Legendre polynomials fulfill the orthogonallyroperty. If they are
normalized this property is defined as

= = _(0,ifm#n (10)
| m@R@az={

After applying this property on Equation ( 7 ), thegendre coefficients are
derived as

10 = [ P PGP o1, 22) 0,2, (1)
A

Doing a; , = a; ./ (2 + 1)/2 and recurring to Equation ( 9 ), the Legendre
coefficients above become

L
I m n o ( 12 )
= Y Y Gt | A G210z
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Therefore, these coefficients can be expressedrabinations of the weighted
high-order moments:

I m n
L) = Z Z Z Ty @i nE™ (2821 75). (13)
i=0 j=0 k=0
Fitting a multivariate non-Gaussian distribution ithis way can be
computationally demanding. For this reason, theaegmn of the Legendre
polynomial series in ( 7 ) is truncated to an ordewvhich is not larger than 10, as
a rule of thumb. Therefore, approximation of thetmariate pdf becomes
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When the moments involve one to two points, they ba inferred directly
from available samples. However, as the number ahftp in the high-order
moment template increases, the replicates requoedhe robust inference of
these moments become scarcer. For this reasonaiding image deemed
representative of the spatial distribution of gmadeused to provide the required
high-order spatial statistics. The HOSIM algoriteoans the samples and training
image to obtain and store all the required higheorstatistics that fall within a
search volume. Subsequently, HOSIM proceeds tinfeeence of the conditional
pdf at the nodes of a grid. The high-order stassthat correspond to the spatial
template defined by the neighbouring samples too@denis retrieved from the
storage and used to approximate the conditional ptie following section
illustrates the application of this new simulatialyorithm to the data obtained
from a structurally controlled gold deposit.

Application to a Structurally Controlled Gold Deposit

The dataset used for illustrating the applicatibtd®SIM is a subset of a larger
drilling campaign dataset from the Apensu depdsitated in the Ahafo South
district of Ghana and owned by Newmont Ghana Gold. LThe gold
mineralization in this deposit is controlled by tdeminant thrust fault and its
subsidiary structures. The richer gold grades awed mainly in the hanging wall
of the thrust fault [6]. Newmont provided the dntf dataset containing the gold
assays, as well as a tridimensional geological inafdkhe thrust fault and the two
families of subsidiary structures. Taking into amcbthe host rock, this model
defines four mineralization domains.

Original Data and Training mage

The selected region for this study comprises a melwf 300m x 600m x
150m, which was rotated to make the fault thrust stikeallel to the North
South direction. This region is located at the eewff the deposit, which is the
most densely sampled area. Figure 1(a) shows ai@® of the mineralization
domains in the selected region. Figure 1(b) shdves drill-hole traces in the
selected region. Drill-holes are, for the most paverpendicular or sub-
perpendicular to the mail fault thrust.
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Figure 1 (a) Geological model view showing the mi@iult zone (dark blue) and the two
families of subsidiary structures (pale blue anttgo). (b) A similar view showing the
drill-hole traces

The samples within the selected region were cortgubsh 5n intervals and
the composited gold grades rescaled between 0 @ndtis last was done for
confidentiality reasons. The cell declustering rodtj13] was used to assign
declustering weights to the composites. Table Wwshitie basic statistics for the
clustered and declustered 4106 composited in theeted region. As this table
shows, the impact of data clustering in the Auard its statistics is significant.

Table 1: Basic statistics for clustered and deehest Gold composites

Statistics for Mean Std. Q25 Q50 Q75
(Au g/(t x10)): Dev.

Clustered composites: 0.24 0.52 0.03 0.09 0.22
Declustered composites;  0.19 0.44 0.02 0.06 0.16

Figure 2(a) shows the cumulative probabilities omposites grouped by
domains. The richer gold population is presenhifault thrust domain, whereas
the distribution of gold grades in the other thdeenains, the subsidiary structures
and the host rock, are very similar among themFigire 2(b) shows, the host
rock contains most of the composites, followed gy fault domain. Only 13% of
the total number of composites belongs to the tamilfes of subsidiary
structures. This and the fact that the grades iligions in the subsidiary
structures are similar to the grades distributiothe host rock, make it difficult to
characterize their corresponding mineralizatiortiappatterns.
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Figure 2 (a) Cumulative probabilities of gold gradend (b) proportion of samples in the
fault zone (blue), subsidiary structures (pale falng golden) and host rock (red)

The required training image was built using segaér@aussian simulation
(SGS) with location-dependent variograms [15] ttudiow the geometry of the
domains. The domain boundaries were defined as, tlailis only composites
within the boundaries of a domain were used forutiiting the grades in it. The
dimensions of the training image are the same aditmensions of the zone of
study. It is important to remark that the use ofSSfér the construction of the
training image raises concerns about its abilityréproduce the high-order
statistics of data, given that the high-order cuantd of Gaussian distributions
tend to zero [16]. However, there are few prattadternatives to SGS within
domains for the construction of training imagesrfrecattered samples.

Figure 3 shows the third order (at the left) andrfio order (at the right)
cumulants obtained from the composites (at the aog) the training image (at the
bottom). These cumulants were calculated usingmgdsional templates formed
by vectorshy, hy and h;; of different lengths and parallel to the X, Y ahdxes,
respectively. Despite its patchiness, the third fmath order cumulant maps of
composites (Figure 3(a) and Figure 3(b), respeglivehow a higher continuity
along the Y axis. This is clearly related to thatowuity of high grades in the fault
domain. The fluctuations of the cumulants in thection parallel to the X and Z
axes are related to the interaction of high gradethe fault domain and the
subsidiary structures at the east.

The third and fourth order cumulant maps of théning image (Figure 3(c)
and Figure 3(d), respectively) show features coatgarto the cumulant maps of
composites, but the former appear more continudbhi is because there is no
lack of replicates for the templates used to calteulthe cumulants but also
because the use of SGS in the construction ofréiiréing image.
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Figure 3 (a) and (b): third and fourth order, respely, cumulant maps for the composited
samples. (c) and (d): third and fourth order, respely, cumulant maps for the training
image.

High-Order Smulation

The composite dataset and the training image destrin the previous section
were used as inputs for the HOSIM algorithm. HOSilperimposes the data to
the training image and rescales the merged valetwelen O and 1. Before
simulating the grades, HOSIM scans the mergeditgito obtain and store the
high-order statistics for all the spatial templatieat can be accommodated in a
search template. In this case, the dimensionseoséarch template were 75m x
135m x 55m, with the longer side parallel to thaxis. The declustering sample
weights were also superimposed to the equal weifhifse training image nodes.
The maximum number of neighboring samples to camithe simulation of a
node was set as 24, and the order of the polyn@aiés was 7. A larger number
of samples or higher orders for the Legendre potyiats increase considerably
the computational effort with modest improvementtioé realizations. Twenty
HOSIM realizations were generated; Figure 4(b) shew8D sectional view of a
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randomly chosen HOSIM realization. Figure 4(a) shavsimilar view for the
training image.

300. 0. 300. 0.

Figure 4 Sectional views of the training image éa)}d a randomly chosen HOSIM
realization (b)

HOSIM realizations reproduce the high grade mineagibn of the fault
domain without need of constraining the simulatigthin domain boundaries, as
in the case of SGS realizations. However, the miimation in the subsidiary
structures is poorly reproduced in the HOSIM resilns, but this also happens in
the training image. As Figure 5 shows, HOSIM reslans using weighted high-
order statistics reproduce the declustered cunvelgiirobability distribution of
original data. The reproduction of the data covarain different directions is
also acceptable (see Figure 6). The third and tioortier cumulants maps of the
realizations are smoother than similar cumulantsraygained from data.
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Figure 5 Cumulative probability distributions of mposite data (red line) and HOSIM
realizations (black lines)



11

(a) X axis (b) Y axis

-0.05 1 -0.05 1 -0.05 1
0. 5 [} 0.

1 A0, T 20,7 30, 4007 50, 6O, 1

Distance(m) Distance(m) Distance(m)

Figure 6 Covariances of composite data (red datajping image (solid blue line) and
HOSIM realizations (dashed black line) in the dii@ts parallel to the X axis (a), Y axis
(b) and Z axis (c)

The cumulant maps of HOSIM realizations tend torapph those obtained
from the training image as the order of the cumtglamcreases. However, as it can
be observed in Figure 7, some features presenthén cumulant maps of
declustered data are also reproduced in the timiddfeurth order cumulant maps
of a HOSIM realization. These features include artgln continuity along the Y
axis than shown by the training image cumulant megsd the eastward
fluctuations of the realization’'s cumulant valusghich are higher than those
shown in similar maps corresponding to the trainingge.

@ ®
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600 300 600 300

Figure 7 third order (a) and fourth order (b) cuamil maps of the HOSIM realization
shown in Figure 4(b)

Discussion and Conclusions

The incorporation of declustering weights in théeience of the low and high-
order statistics allows HOSIM to reproduce the dsigred data cdf and its low
order statistics. Differently from widespread siatidn techniques, such as
sequential Gaussian simulation, HOSIM can alsoywedealizations that contain
the high-order statistics of the data and the imgirmage.
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The higher the order of the statistics the clober realizations statistics will
approach those of the training image. This is etgabcsince only an exhaustive
image can provide enough replicates needed to ihéehigh-order statistics. This
poses the problem of availability of training imag#at are rich in high-order
spatial structures. For the case study presentedisnpaper, the training image
was built using sequential Gaussian simulation iwitfoundaries and using local
variograms. This methodology introduces more complgatial structures in the
training image, but its high-order statistics dilhd to zero quicker than those of
the dataset. The generation of non-Gaussian cantgtraining images containing
low and high-order statistics representative ofthenomenon to be simulated is a
subject of ongoing research.

HOSIM realizations are able to reproduce the maiatial features of the
mineralization without being constrained by dom&iaundaries. In the case
presented, the spatial distribution and valueshefhigh grade mineralization in
the fault domain are honored in the realizatioriee Tineralization patterns in the
subsidiary structures, however, are more diffitalteproduce. This is due to the
low number of samples taken within these structuaesl the similitude of their
corresponding cdfs with the cdfs of gold gradethahost rock. A related subject
of future research is the incorporation of weigbktained from the Tau model
[17]. This may allow reducing the impact of backgnd noisy information in the
inference of the high-order statistics and the @@l pdfs, and thus enhancing
the reproduction of the spatial features relatetthéomineralization controls.
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