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Abstract The algorithm for conditional simulation based on spatial high-order 
statistics is applied to a drilling dataset obtained from a structurally complex gold 
deposit, the Apensu deposit in Ghana. Spatial high-order statistics allow capturing 
nonlinear spatial features of the gold mineralization that variograms and 
covariances cannot. Since robust spatial high-order statistics cannot be inferred 
only from scattered samples, they are borrowed from a training image. In this 
case, sequential Gaussian simulation with local variograms within domain 
boundaries is used to build a training image. At different locations HOSIM uses 
the spatial high-order statistics to approximate non-Gaussian distributions of 
possible values conditioned by neighboring data. The effect of sampling clustering 
in the probability distribution and its statistics is taken into account by 
incorporating declustering weights in the inference of low and high-order statistics 
required by high-order simulation. The resulting realizations reproduce the cdf and 
the low-order statistics of data and tend to approach the high order statistics of the 
training image. They also reproduce the gold-rich major and well sampled 
structures. The reproduction of small structures and undersampled is hindered by 
the use of a Gaussian based training image and the similitude of their gold grade 
populations to those of the background host rock. 

Introduction 

Structural processes, such as faulting and folding, are often the major controls of 
the spatial distribution of grades in diverse deposits. Grades are higher within and 
in the proximity of faults that act as mineralization feeders and tend to fade away 
from them. Moreover, mineralized rock layers are often bended and 
discontinuous. The resulting structural setting of a deposit is often complex and it 
is seldom fully mapped, whereas measurements of grades are limited in number. 
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This calls for the characterization of the grade distribution uncertainty in mineral 
resources models. A common approach is to describe the range of possible 
scenarios by the ensemble multiple realizations generated using Sequential 
Gaussian Simulation (SGS). However, besides the linear spatial continuity 
imposed by the variogram model, SGS realizations show the characteristic 
maximum entropy pattern [1] resulting from the adoption of the Gaussian model 
for the distribution of continuous values. In certain cases, different patterns of the 
spatial distribution of grades can be associated to different geological units. In 
such cases, the common practice is to use categorical simulation techniques for the 
modeling of the geological units in combination with SGS for the modeling of 
grades within the units. Among the commonly used techniques for the modeling 
of categorical variables for mining applications are Sequential Indicator 
Simulation [2],  Plurigaussian Simulation [3] and simulation based on multiple 
point statistics [4-6]. Proceeding in this way allows introducing complex spatial 
features in the simulated models.  

This paper presents the algorithm of simulation based on spatial high-order 
statistics, or High-Order Simulation (HOSIM) [7, 8] as an alternative to the 
combined approach for the modeling of grades. Spatial high-order statistics, such 
as moments and cumulants, are able to capture non-linear and high-order spatial 
features from data and training images [9, 10]. At each location in a grid, HOSIM 
uses these high-order statistics to approximate the local non-Gaussian distributions 
conditioned by neighboring data values. The resulting realizations reproduce not 
only the histogram and covariance of the original data, but also the high-order 
statistics of data and the training image. The next section contains an overview of 
the theory of spatial high-order statistics and their use for fitting non-Gaussian 
multivariate conditional distributions in a sequential simulation framework. 
Weighted high-order moments are presented as a way to account for data 
clustering when inferring the non-Gaussian conditional distributions. A dataset 
consisting of drill-hole samples and a geological model is used to build a 
continuous training image. HOSIM integrates the samples and the training image 
for the inference of high-order statistics. Using this initial information, multiple 
HOSIM realizations are generated. The capability of HOSIM realizations to 
reproduce the low and high-order statistics of the initial information, which is a 
validity test for any geostatistical simulation method [11], is assessed. The last 
part of this paper discusses the potential and current limitations of this new 
simulation approach and the undergoing work aimed to improve this algorithm. 

Simulation Based on High-Order Statistics 

This section provides a brief introduction to high-order spatial statistics and their 
use for approximating multivariate non-Gaussian distributions. The HOSIM 
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algorithm is presented as an implementation of this theory for the simulation of 
non-Gaussian variables in a sequential framework.  

High-Order Spatial Statistics 

Consider a spatial random function ���� defined over a domain	� and u as a 

location within that domain. The vectors �� , ⋯ ,�� define a template ������,…,�� of  	 + 1 points	��,�� + �� , … ,�� + ��. The set of set random variables 
corresponding to the points in the template are ����� = ��, ���� + ��� =��, ⋯���� + ��� = ��, A high-order spatial moment for this arrangement is 
defined by the integration  


����� ∙ ���� ⋯ ����� = 
 �������� ⋯ �����������⋯ �����
	���

, ( 1 ) 

with � = (��, ��,⋯ , ��). The experimental high-order spatial moments are 
obtained by the average of the product of the values �� , ��,⋯ , �� for all instances 
where the arrangement of sample locations defined by �� ,�� + �� , ⋯ ,�� + �� is 
replicated. Sampling of mineral deposits often is clustered in the richest areas. 
This results in biased grades distributions and statistics. Spatial declustering 
methods are used to assign higher weights to isolated samples and lower weights 
to samples in densely samples areas. These weights are incorporated in the 
estimation of declustered distributions and its statistics. Following this idea, 
declustered high-order moments can be inferring by incorporating multiple-point 
declustering weights. The proposed form of multiple-point declustering weights is 
obtained by the geometrical average of the individual declustering weights, �� , � = 0, … ,	 assigned to each sample in a template ������,…,��: 

�
�,�,…,� = ���� , ��, ⋯ , ��� = �����⋯����� . ( 2 ) 

If the template  ������,…,�� has ���⋯�� replicates within the domain, the 
corresponding weighted experimental high-order moment can be inferred by 


�(�)��������� ⋯����� = 1

∑ �
�,�,…,�


��⋯��

�

� �
�,�,…,��������� ⋯ ���� .

��⋯��

���

 ( 3 ) 

Moments can be expressed as combinations of cumulants of the same and 
lower order, and viceversa [12]. For a zero-mean random function, the spatial 
cumulants from order one to four are given by 
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 ������ 																		= 
���� = 0, �����, ��� 												= ������ = 
������, �����, ��,��� 						= �����,��� = 
��������, �����, ��,��,��� = �����,��,��� 	= 		
���������� −																																					
������
������− 
������
������ −																																				
������
������. 

( 4 ) 

Note that the first cumulant is the mean and the second is the spatial 
covariance. Thus, spatial cumulants can be understood as the multiple-point 
generalization of the covariance. 

Approximation of a Non-Gaussian Multivariate pdf 

In conditional simulation, the distribution of values at any unsampled location is 
conditioned by the input information, particularly a dataset �� = ����

α
� =�

α
,α = 1, … ,	�, and previously simulated nodes. If the initial conditioning data is �� = ����, the conditional pdf at a location �� is given by 

f���z�|Δ�� = f��z� , z� , … , z��� f��z�, z� , … , z��dz��

. ( 5 ) 

With   as the domain where ��is defined. Once the conditional pdf is built, a 
realization is subsequently drawn from it. This newly simulated value, �′� is added 
to the dataset. Thus, the new conditioning data consists of �� = ���� ∪ ��′�	� and 
is used to condition the pdf at a second node. This process continues by following 
a random path until all nodes of the predefined grid are simulated [13] .  

The main problem is to infer the multivariate distribution in the numerator of 
expression ( 5 ). In Sequential Gaussian Simulation, for instance, the multivariate 
pdf is efficiently modeled by a multiGaussian distribution, which is fully defined 
by a covariance matrix and a vector of local means. In a different fashion, high-
order simulation uses high-order statistics and Legendre polynomials. For 
example, consider an unsampled location �� and two conditioning data, �� and ��, 
the corresponding declustered multivariate pdf is given by [14] 

��(�)��� , ��, ��� = ���� , ��, �������� , �� , ���
�����, �� , ���� . ( 6 ) 

If the marginal pdfs are defined in  = �−1,1� , which usually requires 
rescaling the original values, the multivariate pdf can be expressed as a series of  
Legendre polynomials [7]: 
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��(�)��� , ��, ��� = �� �!�,�,�

��� "#�(��)"#�(��)"#�(��)
�

���

�

���

�

���

. ( 7 ) 

!�,�,�

���  are the weighted Legendre coefficients and "#
α
���,α = $,%,	, are the α-

order normalized Legendre polynomials, such as: 

"#
α
��� = &2α + 1

2
"
α
���. ( 8 ) 

The first two Legendre polynomials are "���� = 1 and "���� = �. The 
following derivation allows obtaining Legendre polynomials of any order α ≥ 0, 

"
α
��� = 1

2αα!

�α��α ���� − 1�α� = �'�,α�α
α

���

, for	� ∈ �−1,1�. ( 9 ) 

The Legendre polynomials fulfill the orthogonally property. If they are 
normalized this property is defined as 


 "#����"#������
�

= ( 0, if	% ≠ 	
1, if	% = 	.		 ( 10 ) 

After applying this property on Equation ( 7 ), the Legendre coefficients are 
derived as 

!�,�,�

��� = 
 "#�(��)"#�(��)"#�(��)��(�)��� , ��, ������������
��

. ( 11 ) 

Doing '#�,α = '�,α�(2α + 1) 2⁄  and recurring to Equation ( 9 ), the Legendre 
coefficients above become 

!�,�,�
���

= ���'#�,�
�

���

�

���

�

���

'#�,�'#�,�
 ����������������� , ��, ������������
��

. 
( 12 ) 

Therefore, these coefficients can be expressed as combinations of the weighted 
high-order moments: 

!�,�,�
���

= ���'#�,�
�

���

�

���

�

���

'#�,�'#�,�
(�)�����������. ( 13 ) 

Fitting a multivariate non-Gaussian distribution in this way can be 
computationally demanding. For this reason, the expansion of the Legendre 
polynomial series in ( 7 ) is truncated to an order *, which is not larger than 10, as 
a rule of thumb. Therefore, approximation of the multivariate pdf becomes  
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��(�)��� , ��, ��� = �� �!�,�,�

��� "#�(��)"#�(��)"#�(��)
�

���

�

���

�

���

. ( 14 ) 

When the moments involve one to two points, they can be inferred directly 
from available samples. However, as the number of points in the high-order 
moment template increases, the replicates required for the robust inference of 
these moments become scarcer. For this reason, a training image deemed 
representative of the spatial distribution of grades is used to provide the required 
high-order spatial statistics.  The HOSIM algorithm scans the samples and training 
image to obtain and store all the required high-order statistics that fall within a 
search volume. Subsequently, HOSIM proceeds to the inference of the conditional 
pdf at the nodes of a grid. The high-order statistics that correspond to the spatial 
template defined by the neighbouring samples to a node is retrieved from the 
storage and used to approximate the conditional pdf. The following section 
illustrates the application of this new simulation algorithm to the data obtained 
from a structurally controlled gold deposit. 

Application to a Structurally Controlled Gold Deposit 

The dataset used for illustrating the application of HOSIM is a subset of a larger 
drilling campaign dataset from the Apensu deposit, located in the Ahafo South 
district of Ghana and owned by Newmont Ghana Gold Ltd. The gold 
mineralization in this deposit is controlled by the dominant thrust fault and its 
subsidiary structures. The richer gold grades are found mainly in the hanging wall 
of the thrust fault [6]. Newmont provided the drilling dataset containing the gold 
assays, as well as a tridimensional geological model of the thrust fault and the two 
families of subsidiary structures. Taking into account the host rock, this model 
defines four mineralization domains. 

Original Data and Training Image 

The selected region for this study comprises a volume of 300%	 × 600%	 ×
150%, which was rotated to make the fault thrust strike parallel to the North 
South direction. This region is located at the center of the deposit, which is the 
most densely sampled area. Figure 1(a) shows a 3D view of the mineralization 
domains in the selected region. Figure 1(b) shows the drill-hole traces in the 
selected region. Drill-holes are, for the most part, perpendicular or sub-
perpendicular to the mail fault thrust.  
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Figure 1 (a) Geological model view showing the main fault zone (dark blue) and the two 
families of subsidiary structures (pale blue and golden). (b) A similar view showing the 
drill-hole traces 

The samples within the selected region were composited in 5m intervals and 
the composited gold grades rescaled between 0 and 10. This last was done for 
confidentiality reasons. The cell declustering method [13] was used to assign 
declustering weights to the composites. Table 1 shows the basic statistics for the 
clustered and declustered 4106 composited in the selected region. As this table 
shows, the impact of data clustering in the Au cdf and its statistics is significant. 

Table 1: Basic statistics for clustered and declustered Gold composites 

Statistics for  
(Au +/(, × 10))	: Mean  Std. 

Dev.  
Q25 Q50 Q75 

Clustered composites: 0.24 0.52 0.03 0.09 0.22 
Declustered composites: 0.19 0.44 0.02 0.06 0.16 

 
Figure 2(a) shows the cumulative probabilities of composites grouped by 

domains. The richer gold population is present in the fault thrust domain, whereas 
the distribution of gold grades in the other three domains, the subsidiary structures 
and the host rock, are very similar among them. As Figure 2(b) shows, the host 
rock contains most of the composites, followed by the fault domain. Only 13% of 
the total number of composites belongs to the two families of subsidiary 
structures. This and the fact that the grades distributions in the subsidiary 
structures are similar to the grades distribution in the host rock, make it difficult to 
characterize their corresponding mineralization spatial patterns. 
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Figure 2 (a) Cumulative probabilities of gold grades and (b) proportion of samples in the 
fault zone (blue), subsidiary structures (pale blue and golden) and host rock (red) 

The required training image was built using sequential Gaussian simulation 
(SGS) with location-dependent variograms [15] that follow the geometry of the 
domains. The domain boundaries were defined as hard, this is only composites 
within the boundaries of a domain were used for simulating the grades in it. The 
dimensions of the training image are the same as the dimensions of the zone of 
study. It is important to remark that the use of SGS for the construction of the 
training image raises concerns about its ability to reproduce the high-order 
statistics of data, given that the high-order cumulants of Gaussian distributions 
tend to zero [16].  However, there are few practical alternatives to SGS within 
domains for the construction of training images from scattered samples. 

Figure 3 shows the third order (at the left) and fourth order (at the right) 
cumulants obtained from the composites (at the top) and the training image (at the 
bottom). These cumulants were calculated using tridimensional templates formed 
by vectors � ,�!	and	�� of different lengths and parallel to the X, Y and Z axes, 
respectively. Despite its patchiness, the third and fourth order cumulant maps of 
composites (Figure 3(a) and Figure 3(b), respectively) show a higher continuity 
along the Y axis. This is clearly related to the continuity of high grades in the fault 
domain. The fluctuations of the cumulants in the direction parallel to the X and Z 
axes are related to the interaction of high grades in the fault domain and the 
subsidiary structures at the east.  

The third and fourth order cumulant maps of the training image (Figure 3(c) 
and Figure 3(d), respectively) show features comparable to the cumulant maps of 
composites, but the former appear more continuous. This is because there is no 
lack of replicates for the templates used to calculate the cumulants but also 
because the use of SGS in the construction of the training image.  
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Figure 3 (a) and (b): third and fourth order, respectively, cumulant maps for the composited 
samples. (c) and (d): third and fourth order, respectively, cumulant maps for the training 
image. 

High-Order Simulation 

The composite dataset and the training image described in the previous section 
were used as inputs for the HOSIM algorithm. HOSIM superimposes the data to 
the training image and rescales the merged values between 0 and 1. Before 
simulating the grades, HOSIM scans the merged training to obtain and store the 
high-order statistics for all the spatial templates that can be accommodated in a 
search template. In this case, the dimensions of the search template were 75m x 
135m x 55m, with the longer side parallel to the y axis. The declustering sample 
weights were also superimposed to the equal weights of the training image nodes. 
The maximum number of neighboring samples to condition the simulation of a 
node was set as 24, and the order of the polynomial series was 7. A larger number 
of samples or higher orders for the Legendre polynomials increase considerably 
the computational effort with modest improvement of the realizations. Twenty 
HOSIM realizations were generated; Figure 4(b) shows a 3D sectional view of a 
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randomly chosen HOSIM realization. Figure 4(a) shows a similar view for the 
training image.  

 

Figure 4 Sectional views of the training image (a) and a randomly chosen HOSIM  
realization (b) 

HOSIM realizations reproduce the high grade mineralization of the fault 
domain without need of constraining the simulation within domain boundaries, as 
in the case of SGS realizations. However, the mineralization in the subsidiary 
structures is poorly reproduced in the HOSIM realizations, but this also happens in 
the training image. As Figure 5 shows, HOSIM realizations using weighted high-
order statistics reproduce the declustered cumulative probability distribution of 
original data. The reproduction of the data covariance in different directions is 
also acceptable (see Figure 6). The third and fourth order cumulants maps of the 
realizations are smoother than similar cumulant maps obtained from data.  

 

 

Figure 5 Cumulative probability distributions of composite data (red line) and HOSIM 
realizations (black lines) 
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Figure 6 Covariances of composite data (red dots), training image (solid blue line) and 
HOSIM realizations (dashed black line) in the directions parallel to the X axis (a), Y axis 
(b) and Z axis (c) 

The cumulant maps of HOSIM realizations tend to approach those obtained 
from the training image as the order of the cumulants increases. However, as it can 
be observed in Figure 7, some features present in the cumulant maps of 
declustered data are also reproduced in the third and fourth order cumulant maps 
of a HOSIM realization. These features include a shorter continuity along the Y 
axis than shown by the training image cumulant maps, and the eastward 
fluctuations of the realization’s cumulant values, which are higher than those 
shown in similar maps corresponding to the training image.   

 

 

Figure 7 third order (a) and fourth order (b) cumulant maps of the HOSIM realization 
shown in Figure 4(b) 

Discussion and Conclusions 

The incorporation of declustering weights in the inference of the low and high-
order statistics allows HOSIM to reproduce the declustered data cdf and its low 
order statistics. Differently from widespread simulation techniques, such as 
sequential Gaussian simulation, HOSIM can also produce realizations that contain 
the high-order statistics of the data and the training image.  
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The higher the order of the statistics the closer the realizations statistics will 

approach those of the training image. This is expected, since only an exhaustive 
image can provide enough replicates needed to infer the high-order statistics. This 
poses the problem of availability of training images that are rich in high-order 
spatial structures. For the case study presented in this paper, the training image 
was built using sequential Gaussian simulation within boundaries and using local 
variograms. This methodology introduces more complex spatial structures in the 
training image, but its high-order statistics still tend to zero quicker than those of 
the dataset. The generation of non-Gaussian continuous training images containing 
low and high-order statistics representative of the phenomenon to be simulated is a 
subject of ongoing research.  

HOSIM realizations are able to reproduce the main spatial features of the 
mineralization without being constrained by domain boundaries. In the case 
presented, the spatial distribution and values of the high grade mineralization in 
the fault domain are honored in the realizations. The mineralization patterns in the 
subsidiary structures, however, are more difficult to reproduce. This is due to the 
low number of samples taken within these structures, and the similitude of their 
corresponding cdfs with the cdfs of gold grades in the host rock. A related subject 
of future research is the incorporation of weights obtained from the Tau model 
[17]. This may allow reducing the impact of background noisy information in the 
inference of the high-order statistics and the conditional pdfs, and thus enhancing 
the reproduction of the spatial features related to the mineralization controls. 
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