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Abstract This paper aims to constrain the geostatistical seismic inversion method, 

improving it to match acoustic and/or elastic models with spatial structures 

interpreted from seismic attribute analysis. A method using seismic attributes as 

parameters in the objective function was created and inserted within the standard 

Global Seismic Inversion approach, where the a global perturbation method is 

done using Direct Sequential Simulation and Co-Simulation as the image 

transforming technique. Convergence is measured by comparing selected seismic 

attributes calculated from the synthetic seismic data with those derived from the 

real seismic dataset. The algorithm was tested on a real case study from a deep-

water carbonate oil reservoir. Several combinations of seismic attributes were 

tested to determine the method’s sensibility. The approach presented here can be 

used to constrain the inherent spatial uncertainty, associated with geostatistical 

seismic inversion processes with features that are inferred from the seismic signal, 

the seismic attributes. 
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Introduction 

By solving geophysical inversion problems one aims to make inferences about 

physical systems from a limited set of observed data. Inversion problems, and in 

particular seismic inversion ones, have non linear and nonuniqueness solutions, 

due to the band-limited nature of the observed seismic data,d, with d Є R
m
, where 

m is the number of observations, which are frequently contaminated with 

measurement errors, e. The observed data is related with a model by some 

physical forward model, a mathematical function g that governs the phenomena 

under investigation. In this framework there are many combinations of n unknown 

Earth model, acoustic and/or elastic models in the seismic sense, m, with m Є R
n
 

that fit the data equally, in this case the seismic reflection dataset (Scales & 

Tenorio, 2001). 

The relationship between observed data and the Earth models can be generally 

summarized by the following equation: 

d=g(m)+e ( 1 ) 

Seismic inversion methods are based on the physical relations between an earth 

models (acoustic and/or elastic impedance models), which are intrinsic of the 

subsurface geology, and the seismic amplitudes (the seismic reflection data itself). 

The latter are obtained through convolution of the reflectivity coefficients, easily 

derived from the acoustic impedance models, with a known wavelet, estimated 

from each seismic dataset. 

The inversion of seismic data into elastic properties, namely acoustic and/or 

elastic impedance models, can be posed as a deterministic or a stochastic problem  

(Bosh, Mukerji, & Gonzalez, 2010). In this paper we will only consider the 

stochastic framework to solve the inversion problem between seismic data and 

earth models. To a detailed comparison between deterministic and stochastic 

methodologies the reader can see Scales & Tenorio, 2001. 

Briefly, one can describe stochastic seismic inversion methods as the 

generation of several realizations of elastic properties, acoustic and/or elastic 

impedances, with the final purpose of uncertainty assessment of those properties. 

Seismic inversion methods in this framework are often referred simply as 

geostatistical seismic inversion methods, when they are based on geostatistical 

simulations. The importance of these inversion techniques has increased its 

importance in the oil & gas industry in the last past decades, since it allows the 

assessment of the uncertainty in reservoir models, leading to better and more 

reliable decisions.   

Since the seminal paper of  Bortoli et al (1993), many authors proposed 

different versions for the geostatistical inversions based on trace-by-trace 

inversion (e.g. Hass & Dubrule, 1994) or considering a global inversion (Soares, 

Diet, & Guerreiro, 2007). The new methodoogy proposed here, is based on the 

Global Stochastic Inversion (GSI; Soares, Diet, & Guerreiro, 2007; Caetano, 
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2009). In this method acoustic impedance models are generated with an iterative 

and convergent process of Direct Sequential Simulation and co-Simulation 

(Soares A. , 2001). The final acoustic impedance models reproduce both the main 

spatial patterns, as revealed by the variograms, and the probability distributions 

retrieved from the original well data. With global inversion methodologies areas 

of poor quality seismic data (with low signal-to-noise ratio) are poorly matched 

and therefore they reveal areas of increased uncertainty within the resulting earth 

model (Soares, Diet, & Guerreiro, 2007).  

In the improved version of this methodology, proposed in this paper, seismic 

attributes are included in the object function of the GSI workflow in order to 

increase the degree of convergence between the observed seismic data and the 

synthetic one resulting of the inversion process. The use of seismic attribute 

analysis during this inversion process better constrains the inversion process, as 

long as non stationary spatial structures are better captured by them,  and allows 

the assessment of the spatial uncertainty of different earth models. 

 “Seismic attributes” can be described as simple tools to describe and quantify a 

characteristic content of the seismic data, the result of any calculation that one can 

do over the seismic signal. In other words, they can be thought as an alternative 

way to display the seismic data, which is normally displayed in amplitude  (e.g. 

Chopra & Marfurt, 2005). 

In this paper we present the outline of the new methodology and its application 

to a real 3-D seismic dataset from a deep-offshore carbonate reservoir. 

Outline of the Proposed Methodology 

In this section we briefly introduce the general workflow detailed described in 

Soares et al (2007), for a deeper explanation, the author is referred to their work. 

 The regular procedure of the GSI method is based in the Direct Sequential 

Simulation an Co-simulation  (Soares A. , 2001) as the transformation technique 

of the 3-D images. The workflow comprises an iterative process following the 

typical approach of genetic algorithms, where the optimization is obtained due to 

the convergence of the transformed images (a set of synthetic seismic cubes at 

each iteration step) towards an objective function, that compares the real seismic 

data with the synthetic seismic cubes computed at each iteration step of the 

workflow.  

At each iterative step the local and global correlations between the synthetic 

and the real seismic data are computed. The optimization step which assures the 

convergence is based on the genetic algorithm approach. The “best parts” of the 

simulated images are used to create a new set of images on the next iteration. The 

iterative process  runs until it converges to a given user-defined threshold . The 

GSI workflow step can be summarized in the following steps: 
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i) Generate a set of initial images of acoustic/elastic impedances by using 

Direct Sequential Simulation from available well log data; 

ii) Compute the correspondent synthetic seismic volume, by convolving the 

reflectivity series, derived from the acoustic impedance models, with a known 

wavelet, estimated at the well location and representative for the entire field; 

iii) Evaluate the match of the synthetic seismograms, of the entire set of 

simulated images, and the observed seismic by computing local correlation 

coefficients; 

iv) Rank the “best” images based on the match between real and synthetic data. 

From them, select the best parts of each image, compose one auxiliary image with 

the selected “best” parts, for the next simulation step, (see point 3 and 4); 

v) Generate a new set of images, by direct Co-simulation, and return to step ii) 

until the objective function reaches a given threshold. 

Integration of Seismic Attributes in  the Objective Function 

The new methodology presented in this paper introduces a new step after ii): a 

specific seismic attribute is calculated from the real observed seismic data and 

from the synthetic cubes. In step iii) the match between seismic attributes 

computed on synthetic seismogramas and real seismic is evaluated and integrated 

in objective function. In the case study presented below, it was chosen the seismic 

attribute - Local Variance – to characterize the different spatial structures in the oil 

reservoir. In the next step iii) the evaluation of the match between synthetic and 

real data also takes into account, by weighting diferently, the attribute cubes. In 

the first steps of the iterative process the correlation between amplitudes has a 

higher weights, than the attributes match. After the first iteration steps the weight 

associated with the correlation value between the attribute cubes increases. In this 

way we achieve a good solution for the seismic inversion problem, not only in 

terms of seismic amplitudes but also in terms of the property that the seismic 

attribute enhances. 

Then, the workflow follows as previously described. A schematic 

representation of the entire process is shown in Figure 1. 
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Figure 1 - Schematic representation of the GSI workflow with the new proposed 

implementation highlighted by the gray box (modified from Caetano, 2009). 

Case Study 

This new method was applied to an ultra-deep carbonate reservoir, in a very 

complex geological environment, off E. South America. In this practice example 

only two wells were available over the study area of approximately 5500km
2
, the 

size of the available seismic dataset to be inverted.   

Given the lack of “hard-data” to constrain the seismic inversion process and to 

model the horizontal spatial pattern of the acoustic impedance for this area a set of 

different geological scenarios was created and tested. In a first stage the horizontal 

variography was computed along the original seismic grid, in terms of amplitude 

continuity. Then, and since the variogram model was build not over the original 

property, acoustic impedance, but over the seismic amplitudes, 4 different 

alternative and possible geological scenarios were created according different 

horizontal variogram ranges (Table 1). The vertical variogram was modeled with 

the available well data and was considered constant in all the geological scenarios, 

since we assume to have good representation of the vertical spatial continuity of 

the property in study (a large number of samples closely spaced). 



6 

 

Examples of vertical and horizontal sections of the original and the final 

synthetic seismic volumes, for each of the geological scenarios, are shown in 

figure 2 In general there is a very good match between the original seismic data 

and the synthetic volumes created after the inversion process. 

As expected, with the increase of the horizontal variogram range the structures 

(seismic reflectors) tend to be more continuous (Figure 2d and Figure 2e) when 

compared with the original seismic data. 

Examples of vertical and horizontal sections of the original and the final 

synthetic seismic volumes, for each of the geological scenarios, are shown in 

figure 2 In general there is a very good match between the original seismic data 

and the synthetic volumes created after the inversion process. 

As expected, with the increase of the horizontal variogram range the structures 

(seismic reflectors) tend to be more continuous (Figure 2d and Figure 2e) when 

compared with the original seismic data. 

 

Table 1 - Summary of the geological scenarios from where the proposed methodology was 

applied. 

Scenario 

Horizontal Range 

(seismic blocks) 
Vertical 

Range (ms) 
Main (E-W) Minor (N-S) 

1 100 40 70 

2 210 78 70 

3 300 100 70 

4 350 110 70 

 

 

The final global correlation coefficients between the original seismic data and 

the synthetic seismic data resulting of the standard Global Stochastic Inversion 

workflow are summarized in Table 2. Note that in the reservoir zone, where the 

wavelet was estimated and extracted, the local correlation coefficients reach much 

higher values.  

 

Table 2 - Summary of the final global correlation between real and synthetic seismic data 

for each of the geological scenarios. 

Scenario 
Global Correlation 

Coefficient 

1 74% 

2 69% 

3 66% 

4 64% 
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Integrating Seismic Attributes in the Objective Function 

From the results of table 1, one should choose which one of the scenarios better 

represents the real subsurface geology. This question is of particular interest for 

scenarios 1 and 2 where the final global correlation is around 70%.  

In order to select the most suitable scenario, and consequently the best 

horizontal variogram model,  a set of different seismic attributes were computed 

from the original seismic and the synthetic seismic cubes and compared. Tested 

attributes included those known as Complex Seismic Attributes (related with the 

different component of the seismic signal) and Structural Attributes (those that are 

related with the internal organization of the seismic reflectors).  

From the set of tested seismic attributes the Local Variance seismic attribute, 

(Pepper & van Bemmel, 2011) was the one that better reflects the important 

spatial structures  present in synthetic seismograms and in the real seismic data.  

The Variance attribute can be briefly described as the normalized variance 

computed over time slices along the seismic cube through a multi-trace local 

window (Pepper & van Bemmel, 2001). In terms, of seismic interpretation, it is a 

valuable tool since it enhances the presence of spatial continuity patterns and local 

variable structures (e.g. faults and depositional borders). 

Examples of  horizontal time slices extracted from the various Local Variance 

cubes (Figure 3) show that, as the range of the variogram increases (from 

geological scenario 1 towards scenario 4) the spatial structures of local variance 

decreases. This effect is clearly observed at the well locations, and when 

comparing the attribute derived from the original seismic with the ones computed 

over the synthetic cubes of scenarios 3 and 4. Notice the large circular areas of 

continuity, low values of Local Variance, around the wells location (Figure 3c and 

Figure 3d). In the other extreme of the 4 geological scenarios, if one compares the 

variance extracted from the original seismic with the one extracted from 

geological scenario 1, the last shows much more small-scale discontinuities than 

the real case, particularly in the NW part of the study area. 

Based on these results, the geological scenario that best fit the real seismic 

dataset, and consequently the real geological subsurface, is the scenario 2. From 

here it was decided to include the computation of the Local Variance attribute as 

part of the Global Stochastic Inversion process (Figure 1). 

 The new proposed methodology matches not only the amplitude content of the 

signal but also the internal structure of the reflectors. The structure is measured by 

the Local Variance attribute and therefore the final synthetic seismic cube, and 

associated acoustic impedance model, is the one that better fits the structure of the 

real subsurface geology in this stochastic context. 

In addition, the final global correlation between the real and the synthetic 

seismic data, derived from the geostatistical inversion constrained by the the Local 

Variance, increased about 10%. 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 2 – Comparison between: (a) real seismic data; and the synthetic seismic data 

created with the standard GSI workflow for (b) geological scenario 1; (c) geological 

scenario 2; (d) geological scenario 3; (e) geological scenario 4. 

Final Remarks 

The integration of seismic attributes in the objective function of the standard 

Global Stochastic Inversion process presented in this work, allowed a better match 

between the structure, in terms of seismic reflectors’ organization, of the original 

seismic data and the synthetic seismic data created during the inversion process. 

Due to this reason they have been included as part of the GSI workflow, which 
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now honors not only the amplitudes of the original seismic data but also the 

internal structure of the data. 

In addition, the use of seismic attributes may be used to distinct and select the 

best elastic model from a set of different geological scenarios. Note that in the 

case study presented here the Local Variance was the one that showed the best 

result in the selection of the best geological model. Nevertheless other seismic 

attributes can be chosen according the objective of each particular study.  

 

 

   

(a) (b) (c) 

  

 

(d) (e)  

Figure 3 - Time slices, at the same time position, from the Local Variance attributes cubes 

derived from (a) the original seismic data; (b) the synthetic seismic cube from scenario 1; 

(c) the synthetic seismic from scenario 2; (d) the synthetic seismic cube from scenario 3 and 

(e) the synthetic seismic cube from scenario 4. Discontinuities values are represented by 

reds while areas of lateral continuity in terms of amplitude are displayed in white. 
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