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Abstract Automatic history matching reservoir models using geological features 

is made challenging by the inability of the modeller to avoid selecting unrealistic 

reservoir models. In the current practice, of modelling fluvial reservoirs, the 

geometry of sandbodies is based on uninformative, deterministic or two-

dimensional geological priors. These priors can lead to a broad field of unrealistic 

models, which may not be appropriate for a specific case. We propose a new 

approach to resolve these problems by developing robust models of the non-

uniform geological parameters space that should be sampled from to find realistic 

geological models, which could be then incorporated into a framework for 

automated history matching and uncertainty quantification.  

In this work we show how reservoir models based on realistic geological priors 

can reduce the uncertainty in oil production. We built multi-dimensional 

geological priors using intelligent techniques, namely Artificial Neural Networks 

(ANN), Support Vector Regression (SVR) and One-Class SVM (OC-SVM). 

These techniques allow the priors to capture hidden relations from multiple data 

sources (modern depositional environments and outcrops). We sample from the 

realistic priors within the history-matching framework to achieve the flow 

responses that match the production data.  

 

 

 

 

 

 

1: Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, 

EH14 4AS, Scotland, U.K. email:  temistocles.rojas@pet.hw.ac.uk 

2: Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, 

EH14 4AS, Scotland, U.K. email: vasily.demyanov@pet.hw.ac.uk 

3: Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, 

EH14 4AS, Scotland, U.K. email: mike.christie@pet.hw.ac.uk 

4: Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, 

EH14 4AS, Scotland, U.K. email: dan.arnold@pet.hw.ac.uk 

mailto:temistocles.rojas@pet.hw.ac.uk
mailto:vasily.demyanov@pet.hw.ac.uk
mailto:mike.christie@pet.hw.ac.uk
mailto:dan.arnold@pet.hw.ac.uk


2 

 

Introduction 

History matching is the process of using production history to improve the 

estimates of geological and reservoir parameters in a specific hydrocarbon field. 

These parameters should be modified to induce the reservoir simulator to 

reproduce production history. In the case of automatic history matching these 

parameters are changed automatically until finding a good match with the 

production history.  

Automatic history matching reservoir models using geological features is made 

challenging by the inability of the modeller to avoid selecting unrealistic reservoir 

models. There are two main causes for this (1) the selection of unrealistic 

combinations of geological parameters (e.g. a river channel that is 1 ft wide and 

1000 ft deep) and (2) the inability of the modelling method to guarantee the 

generation of realistic models. In the current practice, of modelling fluvial 

reservoirs, the geometry of channel sandbodies is based on deterministic or two-

dimensional geological priors. These priors can only find relationships between 

two parameters and lead to a broad field of unrealistic models, which may not be 

appropriate for a specific case. 

We propose a new approach to resolve these problems by: (1) developing 

robust models of the non-uniform geological parameters space that should be 

sampled from to find realistic geological models, which could be then 

incorporated into a framework for automated history matching and uncertainty 

quantification. (2) Developing a technique that allows us to parameterise a multi-

point statistics model of the reservoir based on geological parameters rather than 

abstract features, like the affinity parameter used in SNESIM.  

In this work we show how reservoir models based on realistic geological priors 

reduce the uncertainty in oil production. We built multi-dimensional geological 

priors using intelligent techniques, namely Artificial Neural Networks (ANN), 

Support Vector Regression (SVR) and One-Class SVM (OC-SVM). These 

techniques allow the priors to capture hidden relations from multiple data sources 

(modern depositional environments and outcrops). Furthermore, we can predict 

realistic parameter combinations, not observed in the available data; but still 

plausible in nature. We sample from the realistic priors within the history-

matching framework to achieve the flow responses that match the production data. 

History-matched models produced under geological realistic conditions reduced 

the uncertainty in predicting production responses. 

 

Geological Priors in Modelling Meandering Channels Facies  

 
Figure 1 is a representation of the geomorphic parameters of meandering channels 

(channel width, thickness, meander wavelength and amplitude) commonly used to 

generate geo-cellular facies models. The geological prior information commonly 

used for modelling channel facies geometries are ranges of these geomorphic 
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parameters (uniform priors). This methodology could mislead the generation of 

facies models, ending with unrealistic models.   

 

 
Figure 1 Representation of the geomorphic parameters of meandering channels (channel 

width, depth, meander wavelength and amplitude).  

 

In Figure 2 we can observe that empirical equations do not represent the actual 

behaviour of the relations between channel geomorphic parameters.   

 

 
Figure 2 2D Plot Channel Width vs Channel Thickness, with data from different authors. 

We can observe that empirical equations do not represent the distribution of the data. In 

light blue is the linear regression obtained from [3] data, in red the one proposed by [4] and 

in orange the one obtained from [8] data. 
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Intelligent Prior Information 

 
We highlight that generating prior information for modelling meandering channels 

is a multidimensional problem. It is necessary a technique that can build a more 

realistic representation of priors than linear empirical equation or uniform ranges.  

    We used Machine Learning Techniques (MLT) to built intelligent prior models, 

MLT manage multidimensional problems since it is a very powerful approach for 

analysing multivariate data with complex hidden relationships.  

  To generate these prior representations we used 714 data points taken from the 

literature, with information related to fluvial channel geometry: channel thickness, 

channel width, meander amplitude and wavelength These data were compiled 

using Artificial Neural Networks and Support Vector Regressions. 

 
Artificial Neural Networks(ANN) and Support Vector Regression (SVR)  

In order to visualize the dependencies between the geomorphic parameters of 

meandering channels we use two techniques Artificial Neural Networks (ANN) 

and Support Vector Regression (SVR).  

The results obtained using ANN present some unrealistic artefacts that could 

mislead interpretations, e.g., see [7]. There were obtained four 3D surfaces, built 

with SVR that represents the relationships between the channels geomorphic 

parameters used here. These surfaces can be used as realistic prior information 

models for generating fluvial facies models [7]. 

 

One Class Support Vector Machine (OC-SVM) 

SVR and ANN models demonstrated that all the geomorphic channel parameters 

are directly related. To generate a realistic facies model we need to select a 

combination of parameters that can reproduce realistic channel geometry. These 

two statements take us to another machine learning technique: One-Class Support 

Vector Machine (OC-SVM), see [2]. This technique considers all the data points 

as they belong to one “positive” class, everything outside this class do not belong 

to it and is considered as “negative”. The application of this technique to our case 

suggests that every combination of geomorphic parameters observed in nature 

belongs to a positive class and any combination of parameters outside this class is 

going to be considered as unrealistic. OC-SVM needs to be tuned by modifying 

their hyperparameters and analysing training and testing errors.  

We evaluated the probability of a combination of geomorphic parameters to be 

realistic using OC-SVM, by transforming the OC-SVM results into probability. 

We applied a sigmoid function to the OC-SVM output: 

 

1
p( )=

(1 exp(a b))
x

x
  with     a<0                                                                      (1)  

 

where: p(x) is the probability 
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       x is the decision  value  obtained from OC-SVM  (which  indicates how 

close is this value to be outside from the “positive” class). 

      a and b were tuned via maximum likelihood using a validation 

(independent) data subset. 

 

Figure 3(a) shows how the new probability output can be used to designate a 

combination of channel geomorphic parameters as realistic. I our case we used a 

probability of 0.1 as a cut-off to select realistic combinations of parameters. 

 Figure 3(b) is a representation of the 4-dimensional OC-SVM model 

considering the 4 geomorphic channel variables used in this work, this 

multidimensional cloud is considered as the realistic domain of combination of 

channel parameters.  

 

 
Figure 3 (a) Sigmoid function to evaluate the probability of a combination of geomorphic 

channel parameters to be considered as realistic.  (b) Representation of the 4-D prior 

information, using OC-SVM, every combination of parameters inside the yellow “cloud” is 

considered as a realistic combination of channel geomorphic parameters. In purple we can 

see the points outside the realistic “cloud” which are considered as unrealistic combinations 

of parameters. 

 

Facies Modelling 

 
Meandering channel facies  

Meandering channels developed in unconfined plains move laterally within the 

valley leaving coarse deposits (sand and gravel) while the channel migrates, these 

deposits are called point bars. When the channel avulses, typically left deposits of 

fine sand, silt and clay. Bordering the channels there are formed the levees, 

features that are composed by silt and fine sand and are formed during high level 

flows. Channels are surrounded by fine grained material (silts and clays) that form 

the floodplain deposits [5]. 

For this work we only considered a model with three facies: Point bars, 

Channel deposits and flood plains, being point-bar facies the ones with best 

reservoir quality (porosity and permeability). 

(a) (b) 
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Geostatistical Facies Modelling (Multiple-Point Statistics) 

 In this work we use Multiple Point Statistics as the geostatistical technique to 

generate meandering facies models, due to their advantages over object based 

models and sequential indicator simulation. Using MPS will allow us attaching 

meandering sandbodies to the well and seismic data which is very difficult to do 

using object based models. MPS has the advantage of generating realistic 

geological facies models compared to Sequential Indicator Simulation (SIS). 

It has previously been observed that there is not a good control on the 

geomorphic channel parameters of the output channels when using MPS. In [7] we 

can see that they solved this problem by creating a series of neural networks, 

which transform the geomorphic parameters into the affinity parameters used by 

the MPS algorithm SNESIM. The use of these neural networks allows the control 

in the geometry variations of the output channels.  

 

Field Application 

 
To test this methodology we used the second stratigraphic unit of the synthetic 

reservoir Stanford VI, see [1].  As Figure 4 shows, this stratigraphic unit was 

formed by meandering channel deposits composed by three facies:  channel, 

flood-plain and point-bars. As the problem to be highlighted here is the impact of 

facies geometry on the history-match process, petrophysical properties were set 

constant for each facies. 

 

 
 

Figure 4 Visualization of the Facies distribution in Stanford VI Reservoir (Stratigraphic 

Unit B). This unit is composed by meandering channel, point bars and floodplain deposits. 
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Table 1 shows the porosity and permeability associated to each facies and basic 

information of this reservoir is shown in Table 2. 

Table 1 Petrophysical properties (Porosity and Permeability) associated to each facies. 

Facies Porosity  Permeability (kh) Permeability (kh) 

Channel 5 % 5 mD 1.5 mD 

Point-Bar 17 % 500 mD 150 mD 

Floodplain 0.0001 % 0.0001 mD 0.00001mD 

 

Table 2 Stanford VI Synthetic Reservoir Properties 

Property  Property  

STOOIP 363 MM STB Grid 50x50x40 

Pressure Datum 5000 psi Cell dims 75x100x1 (m) 

Wells (inj) 11 Prod. Start 01 Jan 1976 

Wells (pr) 18 Days of Prod. 2000 

 

Automated History Matching and Uncertainty Quantification 

Figure 5 illustrates the workflow of the automated history-matching process where 

we included the realistic geological prior information models. In this case we 

incorporated the prior information compiled using One-Class SVM. 

 

 
 

Figure 5 Automated history-matching workflow including the realistic geological prior 

information models related to the geometry of the channels. 
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   Our proposed workflow starts by selecting a realistic combination of channel 

geomorphic parameters from the prior information built using OC-SVM, the next 

step is to build a facies model. We used Multiple Point Statistics in this case, and 

we introduce to this process a series of training images which the workflow will 

choose probabilistically. After generating the facies model and populated this 

geological grid with petrophysical properties, the flow simulation is performed 

and the history match process begins, if the history match is not good the 

workflow starts again until we obtain a number of history-matched models. 

   In recent years, research has been quantifying uncertainty by generation of 

multiple history-matched reservoir models rather than seeking the best history 

match model, see [6].  

   Most uncertainty quantification studies use a Bayesian approach, which starts 

with a prior information of a reservoir commonly expressed as probabilities, these 

prior probabilities are then updated using Baye’s rule, see [6]. The data that is 

used to update the prior probability are the observations about the reservoir (e.g., 

production data). By generating multiple models that match history data and 

consistent with prior data, we are able to estimate uncertainties in prediction 

reservoir performance. 

   For the history-match process the sampling algorithm we used was Particle 

Swarm Optimization [6]. Particle Swarm Optimization (PSO) is a population-

based stochastic optimization algorithm, which was extended by [6] to be 

applicable on uncertainty quantification in reservoir modelling. PSO was extended 

using the concepts of Neighbourhood Algorithm (NA) by running NAB code; see 

[6], which computes the posterior probability under the assumption that the misfit 

surface is constant in each Voronoi cell surrounding a particle. 

The sampling algorithm uses the negative log of the likelihood or misfit M. 

Assuming that the measurement errors are Gaussian, independent and identically 

distributed, the misfit is calculated using the conventional least-square formula. 

 
2

2
1

( )
=

2

obs simT
t

t

q q
M                                                                                               (2) 

 

Where T is the number of observations, q is the rate, superscripts obs and sim refer 

to observed and simulated, and 
2
 is the variance of the observed data, see [6]. 

 

Results 

 
Figure 6 illustrates the evolution of the misfit during the process of history-

matching and we can observe how the models try to converge during the process. 

It is clear that the number of models generated to obtain low misfit reduces when 

using intelligent priors. 
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Figure 6 Misfit vs Iteration plot, we can observe how the models are converging. Red dots 

are models with unrealistic set of geomorphic parameters and a misfit of -1.  

   

 Figure 7 is a comparison of the Truth Case with the best history matched model 

and the worst history matched model, we can observe similarities between the 

model with the best mist and the Truth Case. It is important to highlight that all 

the models generated have been built with realistic combinations of geomorphic 

parameters. 

 
 

Figure 7 is a comparison of (A) the Truth Case; (B) the model with the best misfit and (C) 

the model with the worst misfit. 
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Figure 8 is a comparison of the production history and the best history matched 

model. We can observe a relative good match although it is clear that the matching 

is not perfect. 

    

 
 

Figure 8 Comparison of the best history-matched model and production data. 

 

We can identify in Figure 9 the sampling history for each geomorphic parameter, 

and it is clear that the concentration of points is increasing close to the truth case. 

 

 
Figure 9 Sampling history for each of the four geomorphic parameters, we can observe that 

the population of samples was getting crowded close to the truth case. 
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Conclusions 

·       Building intelligent prior models reduces the uncertainty of predicting 

reservoir behaviour, since using only realistic combination of 

geomorphic parameters reduces the spread of the generated solutions. 

·        Using intelligent geological prior information reduces the number of flow 

simulations by avoiding unrealistic models in history-match which 

consequently reduces the computational time. 

·       Realism in the geometry of the geobodies in the reservoir models is 

achieved by using intelligent geological prior information. 

·       There is a problem in reducing the misfit in some models, and we 

associate this problem with not enough control over the connectivity of 

the reservoir facies model. The next step in this work is to generate 

multiple realizations and their connectivity screening. 
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