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Use of Streamlines in Development and 
Application of a Linearized Reduced-Order 

Reservoir Model

Mansoureh Jesmani 1, Behrooz Koohmare Hosseini2 and Richard J Chalaturnyk 3

Abstract Reduced-order modeling procedures are very useful 
techniques where the simulation model must be run many times (i.e. 
optimization problems) or dimensions of the model are large. 
Therefore there is a significant need to reduce the computational 
requirements for the flow simulation model. This paper presents a 
localization method to construct a new reduced-order linear model 
for a multi-phase flow in underground formations which is highly 
nonlinear. The proposed model takes advantage of streamlines using 
information gleaned from streamline trajectories. Mathematical 
methods (e.g. singular value decomposition) are frequently used in 
reservoir model order reduction procedures. In this work streamlines 
are used as an alternative to these classical techniques to decide 
which grid blocks’ state variables are mostly effective on each local 
models. Obviously the state variables are a complete description of a 
system. Therefore reservoir can be thoroughly described through 
state variables, related to the remaining streamlines of the cells. It is 
obvious that analyzing and controlling the behavior of a linear 
system is much easier than a nonlinear one. In this work, a novel 
linearization method in reservoir model is proposed. Dynamic 
variables of a reservoir such as pressure have local dependency, 
which means their values depend only on neighboring grids’ values 
and have no dependency in value to farther grids. This statement 
appears to be physically reasonable as well, since it abides by the 

                                                          
1 School of Computer & Electrical Engineering, Shiraz University, Shiraz, Iran, e-mail: 
jesmani.mansoureh@gmail.com
2 Department of Civil and Environmental Engineering ,University of Alberta, Edmonton, 
Alberta, Canada, e-mail: koohmare@ualberta.ca
3 Department of Civil and Environmental Engineering ,University of Alberta, Edmonton, 
Alberta, Canada, e-mail: rjchalaturnyk@ualberta.ca



2

reservoir fluid flow equations. Therefore dynamic variables of any 
curve can be estimated by dynamic variables of neighboring curves’ 
grid blocks. In the present work, streamlines play the role of the so-
called curves and the linear relationship between neighboring 
streamlines is developed employing least square method. It is shown 
that the local models which are highly nonlinear in Cartesian or 
Radial coordinates, are linear in streamline based coordinates. This 
contributes to have a linear global model. The results of simulation 
on two synthetic cases verified the accuracy of the method.

Keywords: Linearization; Model Order Reduction; Streamline, 
Localization.

1. Introduction

Solving highly nonlinear unsteady reservoir fluid flow problems several times, 
rapidly, and iteratively is physically impossible. This is the case even by the aid of 
current computer-CPUs. One of the reasons behind this issue is that solving 
nonlinear equations typically involves a large matrix factorization at every time 
step of simulation. However analyzing and controlling the behavior of a linear 
system is much easier than a nonlinear one, since solving the linear form of flow 
equations requires only one matrix factorization. As such, applying linearization 
methods in solving complex reservoir fluid flow problem has been proposed 
recently in several studies. This work, presents a novel linearization method in 
reservoir model. 

In [1-2] the fluid flow equations are expanded around previously simulated 
(saved) states and corresponding controls. Performing one or more high-fidelity 
training simulations is necessary in trajectory piecewise linear method (TPWL) 
[2]. Thus, in an uncertain model (i.e. in history matching process where the 
simulation of uncertain model needs to be run many times), the method cannot be 
useful and the linearized model would probably diverge in the course of history 
matching. In previous fluid flow linearization methods the coordination is not 
subject to any changes; however in the present paper, we show that the model 
which behaves quite nonlinearly in Cartesian or Radial coordinates behaves 
linearly in streamline-based coordinates. 

In the control design of a fluid flow system, a substantial gain can be obtained 
using linearized model. In a two-phase flow mode, the number of states is twice 
the number of model grid-blocks. Thus control design, particularly online control 
implementation, is impractical due to the fact that the computational cost of 
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optimal control design is a power function of system dimension (O [n3] ), where n 
represents system dimension). Model order reduction is a way to overcome this 
problem [3].Projecting the equations onto a set of basis function spanning the flow 
solution space, is the central idea of previous works, e.g. combination of TPWL 
with Arnoldi reduced order models [4]. Nonlinear analogue circuits and micro 
machined devices are some examples of the application of this method. Also for 
this application, a truncated balanced realization algorithm has been combined 
with the TPWL order reduction approach [5]. Proper orthogonal decomposition 
(POD) is another approach in the reduced order model procedure [2].

In the previous works, nonlinearity effects were neglected as model order 
reduction was applied to a linearized model. The range of validity of linearized 
model is restricted to a small perturbation around a steady state. In this work, 
instead of using basis functions, state variables of grid blocks categorized into 
some groups and that ones which pass through streamlines are selected as state 
variables of the reduced order local models. These state variables are strongly 
correlated to observation data of each local model.  Apparently, grid blocks that 
no streamline passes through them, have no effect on our approach on reduction of 
reservoir model.

This paper shows that state variables (water saturation, pressure) of each grid 
block has a strong correlation with neighboring grid-blocks’ values, while the 
effect of so called correlation is less for farther grid-blocks. Therefore state 
variables of any trajectory lines which connect a source to a sink and pass through 
certain number of grid blocks can be approximated by state variables of 
neighboring trajectory lines passing through neighboring blocks. In the present 
work, streamlines play the role of the so-called trajectories. A linear relationship 
between neighboring streamlines is developed employing least square method. 

In this study, we first summarize the governing equations for oil-water flow and 
develop a scheme to discretize them. Streamline simulation and least square 
method are then briefly described. In the next step, the development and 
application of the localization, reduction and linearization method in reservoir 
flow model is discussed. And finally some synthetic simulation cases are tested to 
verify the accuracy and efficiency of the proposed method. 

2. Oil-Water Flow Equations and State Space Model

The fluid flow equations of reservoir are obtained by combining mass 
conservation equations with the Darcy's law [6].These partial differential 
equations do not have generally analytical solutions. Consequently, 
discretization of reservoir model is commonly performed using well-established 
techniques of finite element (FE), finite volume (FV), or finite differences (FD). 
The basic element of the spatial domain in a FD discretization is a grid-block, 
and the primary variables of the system, here op (oil pressure) and wS (water 
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saturation), are defined either at grid-nodes or at grid centers. By using FD 
technique, the PDE equations can be approximated for the grid block ijk as [7]:
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Stacking the above equations for all the grid-blocks ijk on top of each other 
yields a time-continuous (generalized) state-space formulation [7]:

.~qVGdTx
dt

dx
VW  (3)

where the state vector 'x' consists of oil pressures and water saturations of each 
grid block, V is a diagonal matrix with entries that are functions of grid-block 
volume and fluid densities, W is a block diagonal matrix with entries being 
functions of compressibility, porosity and water saturation, T and G are sparse 
block matrices accommodating block-interface transmissibilities for oil and water, 
d is the depth-vector, and q~ denotes the well flow-rates.

T matrix transmits the vector of previous step time state variables into the next 
one. The properties of the transmission matrix (spars block) enable us to split the 
large-scale state space model into the smaller ones which are independent from 
each other. It could be shown that the state variables of each grid block do not 
have necessarily a correlation with the state variables of all grid blocks, since there 
are some grid blocks which have zero coefficients in calculation of state variables 
of certain grid blocks. This fact is used in the development of the proposed 
method and shows that the state variables (i.e. pressure, saturation) along each 
streamline could be obtained by just knowing the value of the state variables of the 
adjacent streamline and the relation between these two lines.The relation between 
the lines is explained in section.

3. Streamline Simulation

Streamline simulation is a reservoir simulation technique by which the 
reservoir is split into series of one-dimensional trajectories, and the transport 
equations are solved along the trajectories. Each trajectory is called a streamline, 
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and is computed by drawing the tangential line to the velocity vector, or 
orthogonal to pressure contours at each location. Instead of moving fluids cell-to-
cell as in conventional simulators, a decoupling of the transport problem form the 
underlying 3D grid is made, such as the fluids can be transported more efficiently 
[24]. Under these conditions the time-steps are much larger compared to those in 
conventional finite difference simulators. Therefore streamline simulation is a fast
technique ( faster than finite difference simulator) to model large heterogeneous 
reservoirs with water injection as a mechanism for reservoir pressure maintenance 
[19-24].The technique is suited mainly for optimization techniques which require 
a number of simulations in sequence. The number of time steps is only a function 
of well events and also the changes in physics of fluid transport, and is 
independent of reservoir heterogeneity, reservoir geometrical properties and grid 
block size and orientation [20].

Due to its versatility, streamline simulation has been used in a number of 
applications, example screening and ranking geostatistical models, rapid 
assessment of production strategies, and upgridding and upscaling [21-24]. Other 
advantages of streamline simulators are reduction in grid-orientation effects and 
quantitative flow visualization [24]. The last mentioned attribute of streamlines is 
what we mostly look for, to develop the proxy, as the trajectories carry some fluid 
flow and petrophysical information along themselves.

4. Least Square Model Fitting

Least square method is one of basic methods of identification. Since the 
method is one of main bases of this study, the least square model fitting is 
summarized in this section. 

The model relates an observed variable ty (the regressand), to p explanatory 

variables (the regressor) tu1 to ptu , and all are either known in advance, or 

observed. The model deals with only one unknown coefficient per each 
explanatory. Thus, if the regressor vector has p elements, coefficients are collected 
into p-vectors [10]:

.]...[ 21
T

ptttt uuuu  (4)

.]...[ 21
T

p  (5)

Then the model is:

.,...,3,2,1),( Nteufy ttt   (6)



6

Where te accounts for observation and modeling error. The main objective of 

the method is finding the value ̂ (function of )  which minimizes S defined as 

follow:
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In linear cases, (.,.)f is linear in the unknown coefficients

.,...,3,2,1 Nteuy t
T
tt   (8)

To make the algebra tidy, N-vectors Y and e are defined as a collection of all 
samples 1y to Ny and 1e to Ne respectively. The pN  matrix U is a collection 

of all the tu vectors.

.eUY   (9)
and

eeS T (10)

The value ̂ which minimizes S is obtained by (11):

.][ˆ 1 YUUU TT  (11)

To check that ̂ gives a minimum value of S (not a maximum or saddle point), 

any small change  about ̂ must increase S. If UUT is positive-definite, then 

 UUTT cannot be zero for any real non-zero  and also the existence of the 

inverse of UUT is guaranteed.

5. Development of the Method for Linearization and 
Reduction of Reservoir Model

5.1. Streamline-based Assisted Localization and Reservoir Model-
reduction 

A typical commercial reservoir simulator provides some dynamic outputs such 
as water cut, production rate, etc for a given reservoir and well condition as inputs. 
The schematic of a flow simulator is shown as below:
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Figure 1- Schematic of a Flow Simulator



7

where ijy is the thj output of thi well, and m is the number of wells. If the 

vector of outputs is decomposed into m vectors ),...,1( mizi  , iz being the output 

of the thi well, then the system can be decomposed into m sub-systems. Each sub-
system has its own region of influence, in a way that the region has the largest 
possible influence on the outputs of a certain well [14]. If the region of influence 
for each sub-system is defined, the model obtained from each sub-system does not 
have the complexity of the original system since there is a large group of state 
variables that has no effect on the outputs of a given sub-system. Therefore, each 
sub-system has a limited number of state variables and a simple state space model. 
There are certain ways to identify the regions of influence of each sub-system
[15]. The use of streamline trajectories to identify these regions has proved to be 
useful in the past, especially in history matching problem which deals with large 
scale system. In [15] streamlines were used to identify the grid-blocks that affect 
the production response in a specific well. In this paper, the information gleaned 
from streamline trajectories is used to identify the effective grid-blocks for a 
specific sub-system, then it is possible to restrict the model of subsystem to these 
grid blocks. In fact, the large scale reservoir model is localized into a number of 
subsystems that is equal to the number of wells. Previously Johansen and Foss 
applied local model systems for diagnosis, modeling and control [16-18]. Any 
model will have a limited range of validity which may be restricted by the 
experimental conditions. A model is called "local model", when it has a range 
of validity that is smaller than the desired range of validity. Moreover, 
"operating regime" is a region in which local model is valid [16]. In this paper, 
local models are the models of each sub-system and the operating regime of 
each model is defined using streamline trajectories. Therefore, many state 
variables which have no influence on the observations are truncated from the 
proposed model, decomposing into the significantly small local models. 

Construction of the proposed reservoir model has two main steps: (1) 
Decomposition of output vector of the reservoir model into a number of output 
vectors equal to the number of wells. Each new output vector belongs to a 
certain well and contains the outputs of the well. (2) Identification of the 
effective grid- blocks of each sub-system using streamline trajectories. Third, 
a local model structure must be developed for each operating regime. It is 
necessary to mention that if the local structures are linear in parameters, the 
global model will be linear in those parameters. Therefore, the parameters can 
be identified by standard system identification tools. In the next section, the 
local linear models will be developed using least square method.

5.2. Local Linear Model Structure Development 
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  In the introduction section, the differences between a linear and non-linear 
system were mentioned in terms of behavior control, and it was recommended to 
use a linear system. Also the level of correlation between some certain grid-blocks 
(connected by a streamline trajectory) with the neighboring and farther grid-blocks 
were discussed. This section explains how to develop a linear relation between 
each pair of adjacent streamline trajectories. We show here that a non-linear 
model can be transformed to a linear one using streamline-based coordinates. To 
verify this approach, the simulation results of a synthetic case are brought in the 
next section. 
  A simulation of the full flow model must first be performed and the state 
variables of the system (saturation and pressure of all grid-blocks in two-phase  
flow) should be saved. The streamlines’ configuration and distribution must be 
calculated in the next step using a streamline tracing algorithm, or any other 
streamline simulation commercial tools (i.e. 3DSL, FrontSim). 
By eliminating some grid blocks that streamlines of a certain well do not pass 
through them, a few numbers of grid blocks remain that carry out the most 
significant state variables of the systems. Obviously the state variables represent a 
very good description of a system, therefore the state variables related to the 
remaining cells, can very well describe the desired operating regime of the 
reservoir. After eliminating excessive state variables, streamlines are sorted based 
on the proximity to each other .A value from 1 to N (N is the number of remaining 
streamlines, after elimination) is assigned to each streamline. 
  Having N regular lines, and knowing that they have a linear relationship, we 
need to figure out this relationship. Least square is a good approach to obtain the 
so called relationship, due to its linearity and having sample data in several time 
steps. The next part explains how to obtain the linear relationship.

5.2.1. Implementation of Least Square in Model Construction

First, some definitions are necessary to explain the method:
),( jiS =index of jth cell of ith streamline.

)(iNs =the number of cells that the ith streamline pass through

)(tXpi Pressure of the cell with index i, t is index of time.

)(tXsi Saturation of the cell with index i, t is index of time.

The regressand vector of ith streamline is the state variables of grid-blocks that 
(i+1)th streamline passing through them. Similarly, the regressor vector of ith 

streamline is state variables of grid blocks that the ith streamline passing through 
them. 
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The problem is converted to a simple linear regression equation. Knowing the n
sample times of the vectors at ( ),...,, 21 nttt , one of  the best approach to solve the 

problem and obtain the optimum value of θ for the regression equation is least 
square method. i for each streamline is obtained by least square method as 

follow:
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.)(ˆ 1
i

T
ii

T
ii YUUU  (15)

Consequently, if the value of state variables of grid blocks through which the 
first streamline is passing, are known during the time steps ( the elements of 

)(1 tu are known),  the values of all state variables of all streamlines can be 

calculated. The linear local models can be simply replaced by simulator, thus the 
proposed method is very time consuming. The remaining issue is that elements of 

(.)iu are not completely independent of one another as they are the values of state 

variables of gird-blocks through which a certain streamline passes. Singular Value 
Decomposition (SVD) is coupled with the method to overcome this problem. The 
next section explains briefly the coupling approach of SVD with the proposed 
method. 

5.2.2. Singular Value Decompostion Assisted in Model Construction

Matrix iU can be transformed into the below form by singular value 

decomposition [11,12]:

.T
i WSVU  (16)

with 
n

ITVVVTVITUUWTW iNs  ,)(
and S being Ns(i)×n with singular 

values of iU distributed diagonally. Singular values of iU are positive square 

roots of eigen values of T
iiUU . The columns of V are orthonormalized eigen 

vectors of i
T
i UU and the columns of W are orthonormalized eigen vectors of 

T
iiUU . The rank of iU equals the number of nonzero singular values. If the rank 

of iU is r, the first r columns of W are orthonormal basis of the range space of 

iU . Singular values of stable system indicate the respective state energy of the 

system [2]. Therefore, reduced order can be directly determined by examining the 
system singular values. If s1,…,sn are singular values of iU in decreasing order, 
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singular values with small amount can be removed. The ratio of remaining energy 
to total energy is calculated as follows:

.

1

2

1

2








n

i
i

l

i
i

s

s

(17)

Transfer matrix φ will contain only first l columns of W. Then we have:

.i
T
ii UU  (18)

.)(ˆ 1
i

T
ii

T
ii YUUU   (19)

.ˆˆ
iii   (20)

Two problems are solved using SVD: First, singularity of inverse problem in 
calculating i is solved by transforming the space into the space which is spanned 

by vectors related to largest singular values. Secondly, the computational load is 
significantly reduced due to dimension reduction of iU to iU  .

5.2.3. Wave Advanced Model Construction

By defining new state vector, X(k), which has state variables of gird blocks 
passing through kth streamline for each operating regime, Wave Advanced Model 
(WAM) is constructed as below:

).()()1( kXkAkX  (21)
where

.)(,)1(,)( kkk ukXykXkA   (22)
It can be seen that the size of state vector is varied by the number of cells 

passing through each streamline. The linearity of local models along streamlines 
contributes to having linear global model along streamlines. This approach can be 
used in controller design or other field of reservoir engineering such as history 
matching problem. 

Remark: Obviously the state variables are a complete description of a system. 
Therefore reservoir can be thoroughly described through reduced state variables. 
Moreover, the value of outputs can be obtained by using an intelligent proxy such 
as fuzzy systems where their inputs are reduced state variables and its outputs are 
output of the reservoir model.

This model has some important advantages as below:
1- This model scans space instead of time which is following by time 

consuming. This is mainly because the large state vector of reservoir model 
decomposed into a number of state vectors and at each step just state 
variables of this new state vector is updated. The localization procedure is 
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very simple and can be done by categorizing the outputs by their own 
wells.

2- As the proposed model contains the relation between state variables of two 
consecutive streamlines, this model has more information than the standard 
state space model. Therefore, the unobservability of the model is decreased 
by using the proposed model. This result can be very useful in history 
matching problem.

3- According to the one dimensionality and linearity of the state vectors in 
equation (22), all linear state estimator and controller can be used. For 
instance, the classical Kalman filter can be used by some changes in its 
formulation because of the size variation of state vectors. 

4- In addition to the state vector decomposition, the state variables are 
reduced to the effective ones using streamline trajectories. Therefore, the 
error of model reduction can be negligible. 

6. Example

Case I: In this example we consider a two- dimensional reservoir, which is 
discredited by 25×25 grids of 20m length along each horizon. The model contains 
two production wells and a couple injector wells. The entire configuration of 
streamlines’ paths of the model is illustrated in Figure 2. It can be seen that the 
model can be categorized into two groups: (1) the production well P1 and the 
injection well I2, (2) the production well P2 and the injection well I1. Each group 
has 144 streamlines. We start from the first right streamline to scan all streamlines 
of first group and obtain the the linear relationship between these lines. For 
instance, the relation between state variables of second and first streamlines is 
obtained by least square method. Therefore, the state variables of second 
streamline can be obtained by knowing the state variables of first line and the 
relation between these two lines. Finally, we scan whole of first region of 
reservoir. All of these tasks are done for the second region. After obtaining the 
linear relations between all of consecutive streamlines, the obtained model is 
tested by estimating the state variables of all streamlines by knowing just the 
values of the first right and left ones and the relations which obtained in the 
previous step. In Figure 3-5 the value of the pressure of the proposed method and 
simulator are compared in three different step times, which show that the 
estimated values are well matched to the real ones. The value of saturations equal 
to 0.25 and the estimated ones have this exact value. 
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Figure 2- Model Case I

In order to compare quality of proposed method, root mean square (RMS) error 
is used as the criterion, which is defined as 
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where n is number of reduced cells (in this case it equals to 548) , jX̂ is the 

estimation of state variables in jth cell and jX is the value of state variables 

obtained by simulator in jth cell. In Table I, RMS of state variables in several time 
steps can be seen. The results verify the accuracy of the claim about the linear 
relations between two consecutive streamlines.
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Table I- RMSE of state variables of the proposed method

Time-

step:
1 2 3 4 5 6 7 8 9 10

RMSE of 

Pressure
5×10-10 2×10-10 3×10-10 2×10-10 7×10-10 2×10-10 2×10-10 5×10-10 5×10-10 5×10-10

RMSE of 

Saturation
4×10-30 1×10-30 4×10-30 1×10-30 4×10-30 0 0 0 1×10-30 1×10-30

Case II: The model and the entire configuration of streamlines’ paths are 
illustrated in Figure 6. The reservoir model can be categorized into four groups of 
streamlines. Then the coefficients of linear state space local model, WAM, are 
computed by least square method assisted SVD for each group. In Table II, 
NRMS of state variables related to some random streamlines are mentioned, 
quantitatively. This shows that the proposed model is fairly accurate. Comparison 
between two models' pressure and saturation of a random cell are shown as an 
example in Figure 7.
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Table II- NRMS of state variables related to streamlines

Number 

of Streamline
2 10 19 25 31 36

NRMSE
0.002 0.002 0.013 0.014 0.018 0.002

Figure 6- Model II (Permeability distribution on 3D structural model), Right: Streamline 
configuration of well pairs.
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7. Conclusion

A new reduced-order linear localized model (streamline-based proxy) was 
presented for a highly nonlinear multi-phase flow in underground formations. The 
proposed model took advantage of streamlines using information gleaned from 
streamline trajectories.

In this work localization method was used to categorize the output vector of 
reservoir model and streamlines were used as an alternative to mathematical 
techniques to identify the effective region of each local model. The current work 
presents a novel linearization method in reservoir modeling. It was shown that the 
model which is highly nonlinear in Cartesian or Radial coordinates is linear in 
streamline-based coordinates, due to the linearity of local models along 
streamlines. The results of simulation on a synthetic case verified the accuracy of 
the method. The method can be a very useful technique where the simulation 
model must be run many times (i.e. optimization problems) or where the 
dimensions of the model are large or the original model has a high uncertainty (i.e. 
history matching problem). The method had significant computational reduction 
compared to current reservoir simulators, and can be used a proxy model for 
optimization techniques. 
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