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ABSTRACT 

The state of environment (air, rivers and groundwater, etc.) is described by 
observations on one hand and by deterministic simulations based on the physics and 
chemistry and/or on the biology of complex phenomenon on the other hand, with results that 
usually differ. Generally the deterministic simulation is less variable than observations, but 
the differences cannot be explained by the only differences of support between observations 
(spatial “point” values) and simulation results (representing rather averaged quantities on the 
grid). 

In order to enhance the simulation to match the observations, a “simple” bivariate 
model consists in splitting the studied variable Y as the sum of the deterministic simulation S 
and a correction term R which is supposed to be not correlated (spatially or temporally) with 
S: Y =  S + R. The observations Z differ from Y by a measurement error term. Within this 
model, the estimation of Y from the observations Z can be reduced to the kriging of the 
residual R from the « innovations » Z – S at observation points. 

Joint exploratory analysis of observations and results of deterministic simulations 
shows that this bivariate model does not always suit to the data. Innovations appear to be 
correlated with the simulation S. In order to take such correlations into account, Chilès, 
Séguret et al. (2008) proposed an intrinsic correlation model between the variable Y and the 
deterministic simulation S.  

This intrinsic correlation model is generalized here to the linear model of co-
regionalization. Examples are presented in air and river quality modeling. Consequences for 
the estimation are examined.  

Key words: deterministic model, observations, estimation, simulation, air quality, water 
quality. 

INTRODUCTION 
The state of environment (air, rivers and groundwater...) is described with 

measurements (or « observations »), which are made continuously or episodically during 
campaigns, and with results of deterministic spatio-temporal simulations, which are based on 
the physics and chemistry or on the biology of complex phenomena. But observations differ 
from deterministic simulation results. Those differences are partly explained by the difference 
of support between observations, which can be considered as spatially quasi « point » 
values, and the deterministic simulation results, which represent rather averages on the 
discretization cells. But the difference of support is not sufficient to explain all the observed 
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divergences: mean deviations appear locally and the spatial, temporal or spatio-temporal 
variability is different for the simulations and the observations. Generally the simulation 
results appear to be less variable than observations, but the contrary can also occur. In 
addition to measurement errors, the imperfect description of a real phenomenon is then in 
question. 

Figure 1a presents the superimposition of time series of hourly concentrations of 
dissolved Oxygen simulated by the deterministic model ProSe (Even, Poulin et al., 1998; 
Even, Mouchel et al., 2007; Flipo, Even et al., 2004; Flipo, Rabouille et al., 2007) for the year 
2003, and the continuous automatic measurements made during a part of the year (summer) 
at a measurement station on the Seine River (France). A systematic deviation is visible, 
which is more or less important according to time. The two time series do not present the 
same time variability, specifically at small time intervals (Figure 1b).  

 

 
Figure 1. Time series of hourly concentration of dissolved Oxygen at the Sartrouville station on 
the Seine. a) Superposition of time series. ProSe model (all the 2003 year) and automatic 
continuous measurements in summer. In abscissa, time unit is the day number, with origin at 
1er January 2003; in ordinate, measured concentrations expressed in mg O2 per liter. From 
Polus-Lefèbvre (2010); b) sample simple and cross variograms, calculated on common time 
field (same data date), with visible day periodicity. The nugget component is visible on the 
observation variogram.  

 

Let Y denote the studied variable (a concentration for example), and S the 
deterministic simulation on a uniform support (a regular grid). As the simulation S is generally 
less variable than the observations, a very simple and common model consists in adding a 
corrective term to the deterministic simulation (for example Blond, Bel et al., 2003):  

Y = S + R    (Eq.  1) 

The observations Z are supposed to contain a measurement errorε :  

Z = Y +ε  (Eq.  2) 

The corrective term R is then estimated from the differences or « innovations » Z-S at 
measurement sites or dates, and the concentration Y is estimated by 

Y* = S + R* (Eq.  3) 

When the simulation is known everywhere (which is supposed throughout this article) 
this model is justified in the absence of (spatial or temporal) correlation between the 
simulation S and the « residual » R. Indeed, Eq. 3 then amounts to factorizing Y on S and R 
and the cokriging of Y by Z and S corresponds to separated kriging of each term. As S is 
supposed to be known everywhere, it is equal to its kriging S*.  
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Chilès, Séguret et al. (2008) have shown that the hypothesis of absence of correlation 
between the innovation Z-S and the simulation S is not always verified. In the case they 
studied, the intrinsic correlation model better describes the relations between the 
observations and the simulation.  

This intrinsic correlation model between observations and deterministic simulation is 
hereafter generalized to the linear co-regionalization model (for example Chilès and Delfiner, 
2012). Examples are given and consequences on estimation are examined.  

 

I. CORRELATION BETWEEN DETERMINISTIC SIMULATION AND OBSERVATIONS 
I.1. Intrinsic Correlation  

The presentation is made in the spatial context, but the application in temporal or 
spatio-temporal context is immediate. Chilès, Séguret et al. (2008) proposed the following 
model:  

(i) the main variable Y and the simulation S are intrinsically correlated, i.e. their simple 
and cross variograms are proportional:  

2
Y Sγ ω γ=  and  YS Sγ ω ρ γ=  (Eq.  4) 

 (ii) the observations are affected by a measurement errorε , with an expectation 
equal to zero and with a variance 2

εσ  supposed to be constant (as a simplification), cf. Eq. 2. 
These measurement errors are supposed to be spatially not correlated with Y. They induce a 
nugget component with amplitude 2

εσ  on the sample variogram of the observations: 

( ) ( )20, Z Yh h hεγ σ γ∀ > = +  (Eq.  5) 

 

This model describes a large variety of situations according to the value of ω  and ρ : 

- the simulation S is more or less variable than Y according to ω  is lower or greater 
than 1 ; 

- if S is (in the usual geostatistical sense) a non conditional simulation of Y, then ω  
=1 and ρ=0 ; 

- the cross variogram YSγ  is located between the two simple variograms (or their 

opposite) when ( )1min ,ωρ ω≥  : let’s note that this situation does not necessarily indicate a 
strong link between Y and S, this inequality being verified as soon as ω  is “large” (much 
greater than 1) or very small (much lower than 1). 

As the measurement error is supposed to be not correlated with Y, the observations Z and 
the inaccessible variable Y have the same cross variogram with the simulation S:     

( ) ( )ZS YSh hγ γ=  (Eq.  6) 

Interpretation 
By analogy with Eq. 1, the simulation S is taken as the reference variable, because it 

is supposed to be known at each grid node. Then the intrinsic correlation model can be 
written (Chilès, Séguret et al., 2008):  

( ) ( ) ( )21Y x S x R xωρ ω ρ= + −   (Eq.  7) 
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where S and R are spatially not correlated and with the same variogram.  

The coefficient 2ω  is equal to the ratio /Y Sγ γ . The simulation S proportionally mimics 
the amplitude of the fluctuations of the actual phenomenon Y with a ratio 1/ω .  

The coefficient ρ represents the correlation between Y(x) and S(x) (at the same 
point). This correlation is « intrinsic » (Rivoirard, 2012), i.e. it remains unchanged for any 
regularized (or for any linear combination) provided the regularization support (resp. the 
linear combination) is identical for S and Y; ρ neither depends on the field.  
  

Following Eq. 4, the intrinsic correlation model Y and S can also be written similarly to 
Eq. 7, factorizing S on Y and a residual Q spatially not correlated with Y but with the same 
variogram:  

( ) ( ) ( )21S x Y x Q xξ ρ ξ ρ= + −  , with 1ξ ω=   (Eq.  8) 

The variable Y is chosen as the reference in Chilès, Séguret et al. (2008) and de 
Fouquet, Malherbe et al. (2011). Eq. 8 (used in Polus, Flipo et al., 2011) is more convenient 
in order to write the estimation of Y from the observations and the deterministic simulation S, 
which is supposed to be known everywhere.  

Determination of the model parameters 
In the absence of nugget effect on the variogram of the simulation, and as the 

measurement errors are supposed to be spatially not correlated with Y and S, the model 
parameters are determined as follows: 

- 2ω (and then its positive root ω ) is given by the ratio between the regular part of 
Zγ  and Sγ  ; 

- 2
εσ  corresponds to the nugget component on the variogram of the observations 

and  Yγ  to its regular part ; 

- ρ is given by the ratio between the cross variogram ZSγ  and . Sω γ . 

 

If a nugget effect is present on the variogram of the simulation (and thus also on Yγ ),  

- 2ω (and then its positive root ω ) is given by the ratio between the regular part of 
Zγ  and Sγ  ; 

- the variance of the nugget component of Y is equal to the variance of the nugget 
component of S multiplicated by 2ω  ; 

- the difference between the global nugget effect on Zγ  and the nugget effect of Yγ  
calculated above, gives the variance of measurement errors 2

εσ  ; 

- the correlation coefficient ρ  between Y and S is deduced from the following 
calculation : 
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Verification of the pertinence of the intrinsic correlation model for the studied 
case  

The pertinence of the intrinsic correlation model is verified on the difference (or 
« innovation ») D=Z-S between observation and simulation: 

( ) 21 1Z S S Rε ω ρ ω ρ− = + − + −  

If the model is adequate, then the sample variogram of the « innovations » is fitted by 
its « theoretical variogram » (de Fouquet, Malherbe et al., 2011, with adapted notations) 

( )( )22 2 2( ) 1 (1 ) ( )D Sh hεγ σ ρω ω ρ γ= + − + −  (Eq.  9) 

More simply, since Sω  has the same spatial variability as Y, the variogram of the 
difference H Z Sω= −  between observations and “rescaled” simulation is 

2 2(1 )H Yεγ σ ρ γ= + −     (Eq.  10) 

and the cross variograms between H and observations Z or “rescaled simulation” are 
respectively: 

2 (1 )HZ Yεγ σ ρ γ= + −  and (1 )H S Yωγ ρ γ= − −  (Eq.  11) 

Eq. 10 and 11 can be also used to check the validity of the model. 

Logically, when the correlation ρ  between Y and S is equal to 1, H corresponds to the 
measurement error (cf. Eq. 11).  

I.2. Generalization: linear model of co-regionalization  

Even if it is very flexible, the above model does not permit to describe complex 
relations between observations and deterministic simulation. Numerous phenomena appear 
rather as the sum of components corresponding to different spatial or temporal variability 
scales. In urban or industrial environment, time series of concentrations of diverse 
substances appear as the superposition of one or more components with stationary or linear 
variogram, and of periodic components with daily period, weekly period (reflecting namely 
the economical or scholar rhythms and the week-end) and annual period. All those different 
components are not necessarily present on the deterministic simulation and the ratio 
between the amplitude of the real fluctuations and the simulated fluctuations vary according 
to the components.  

The linear co-regionalization model between Y and the deterministic simulation S 
describes wider situations than the intrinsic correlation model. Taking the deterministic 
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simulation S as the reference, because it is known everywhere on the grid, the linear co-
regionalization model is written 

'
'

S u u
u u

γ γ γ= +∑ ∑  , 2
''

''
Y u u u

u u
γ ω γ γ= +∑ ∑ ,  YS u u u

u
γ ω ρ γ= ∑  (Eq.  12) 

where the u denotes the structures common to Y and S, u’ the structures possibly present on 
the simulation S but not on Y, and u’’ the structures possibly present on Y but not on S.  

In this model the variables are decomposed in different structures. In the bivariate 
case, this decomposition can be written:  

   '
'

u u
u u

S S S= +∑ ∑  and ( )2
''

''
1u u u u u u

u u
Y S R Yω ρ ρ= + − +∑ ∑   (Eq.  13) 

or (cf. Eq. 7 and 8) 

''
''

u u
u u

Y Y Y= +∑ ∑ , ( ) ( ) ( )( )2
'

'
1u u u u u

u u
S x Y x Q x Sξ ρ ρ= + − +∑ ∑ with 1

u
u

ξ ω=  (Eq.  14) 

Eq. 12 means that S reproduces different components of the true system, but with 
different mistakes on their amplitude and with different correlation with real fluctuations. A 
component uS  for which the correlation coefficient uρ  is zero behaves as a « non conditional 
simulation », in the geostatistical sense, of the true homologous component uR . If the 

determination coefficient 2
uρ  is strictly lower than 1, then the deterministic simulation 

contains a component uQ  corresponding (up to a factor) to a « geostatistical non conditional 
simulation » of the true component uY . 

 

The difference D=Z-S can be used to control the pertinence of the model. As 

( ) 2
' ''

' ''
1 1u u u u u u u u

u u u u
Z S S R S Yε ω ρ ω ρ− = + − + − − +∑ ∑ ∑ ∑  (Eq.  15) 

or 

( ) 2
' ''

' ''

1 1u u u u u u u
u u u u

Z S Y Q S Yε ξ ρ ξ ρ− = + − − − − +∑ ∑ ∑ ∑   (Eq.  16) 

the theoretical variogram of the difference is  

( )( )22 2 2
' ''

' ''
1 (1 )D u u u u u u u

u u u
εγ σ ρ ω ω ρ γ γ γ= + − + − + +∑ ∑ ∑   (Eq.  17) 

 

The linear co-regionalization model differs from the intrinsic correlation in the following 
cases: 
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- the ratio uω  varies according to the structures (the ratio /Y Sγ γ  is not constant); 

- the correlation coefficient uρ  varies according to the structures (le ratio between the 
cross variogram YSγ and at least one of the simple variograms Yγ  or Sγ is not constant); 

- some structures are present only on Y or S. 

 

II. EXAMPLES 
 The linear co-regionalization model between the studied variable Y and its 
deterministic simulation S is able to describe various situations. In a temporal context, an 
example for atmospheric pollution on national scale (France) is presented in de Fouquet, 
Malherbe et al. (2011); an example for ecological modeling of water quality on a part of the 
Seine hydrographical network is presented in Polus, Flipo et al. (2011). In the two cases, the 
measurement error on observations is taken into account.  

Those publications are very briefly synthesized and new additional results are presented. 

II.1. Atmospheric Pollution: CHIMERE model and observations 

The links between the deterministic CHIMERE simulation and summer hourly ozone 
measured concentrations are very well described with the linear co-regionalization model for 
metropolitan France in 2005 and 2006 for most of the fixed measurement stations. For a 
temporal window of a few days, the temporal variograms show a daily periodic component 
and an exponential component with range between two and three days. The parameters of 
the bivariate model between observations and CHIMERE were automatically fitted for each 
station and each year. The pertinence of the bivariate model was controlled on the variogram 
of the innovations. 

The Principal Component Analysis of fitted parameters uρ  and uω  indicates a high 
similarity between 2005 and 2006 for the periodic component. For the exponential 
component, the correlation coefficient and the amplitude correction of 2005 and 2006 are 
less similar. Lastly, the variogram analysis and the mapping of fitted parameters are very 
useful to identify which improvements are needed on the deterministic CHIMERE simulation. 

Spatially, the CHIMERE simulation (on a grid with about 10km cells) appears to be 
systematically less variable than the observations. In the example of Figure 2 the cross 
variogram between the observations and CHIMERE indicates a poor spatial correlation. The 
variogram of the innovations is here greater than the variogram of the observations. Indeed, 
it includes the uQ  components (Eq. 16) corresponding to geostatistical « non conditional 
simulations » (Eq. 14). In addition, the nugget component which reflects the measurement 
errors (or a small range structure that is not reproduced by CHIMERE) is large. 
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Figure 2. Automatic fitting of mean spatial variograms of hourly Ozone concentrations (here, 
the 27 July 2006, 9hUT) with linear co-regionalization model. The upper variogram is the one of 
innovations. The cross variogram between observations and CHIMERE increases 
proportionally less quickly near the origin than the CHIMERE variogram, showing that a 
bivariate model of residual type is unsuited. 

 

            

Figure 3. Automatic fitting of spatial variograms of particles PM10 daily concentrations (here, 
the 3 may 2009) with linear co-regionalization model. The CHIMERE variogram intersects the 
variograms of observations and innovations respectively.  
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Lastly, for another variable, the « PM10 » particles, the situation described by the 
linear co-regionalization model appears to be more complex. In the example of Figure 3 
CHIMERE simulation highly exaggerates the amplitude of the large range structure, which is 
however correlated with the observations. The variogram of CHIMERE intersects the 
variograms of the observations and innovations respectively. In this example too, the 
variogram of the innovations is greater than the variogram of the observations, as an effect of 
the components of CHIMERE which are spatially not correlated with the observations. 

II.2. Rivers: ProSe model and observations 

 Measurements of nutrients and dissolved oxygen concentrations in the Seine river 
and its main affluent, the Marne river, are compared with the results of the hydro-ecological 
model ProSe (Even, Poulin et al., 1998; Even, Mouchel et al., 2007; Flipo, Even et al., 2004; 
Flipo, Rabouille et al.,2007). Polus-Lefèbvre (2010) has examined how to improve the spatial 
and temporal estimation of concentrations from measurements using the deterministic 
simulation ProSe as co-variable. For nitrates Polus, Flipo et al. (2011) have shown the 
pertinence of the linear co-regionalization model between observations and deterministic 
simulations on the measurement time series at the water control stations. The spatial 
evolution of the fitted parameters ( ),u uω ρ  makes it possible to clarify the system behavior 
and the imperfections of the model.  

For dissolved oxygen, the linear co-regionalization model fits very well the temporal simple 
and cross variograms of « instantaneous » concentrations time series at measurement 
stations (Figure 4), whereas spatial variograms are fitted within the intrinsic correlation model 
(Figure 5). 

 

 

Figure 4. Simple and cross temporal variograms of instantaneous dissolved oxygen at one 
measurement station (n° 15) on the Seine, fitted within the linear co-regionalization model.   
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Figure 5. Dissolved oxygen concentrations along the Seine. Fitting of the global simple and 
cross variograms within the intrinsic correlation model. 

III. ESTIMATION OF THE MAIN VARIABLE FROM OBSERVATIONS AND 
DETERMINISTIC SIMULATION  

The deterministic simulation S is generally available at all a grid cells, whereas the 
measurements are made (continuously or episodically) at some sites. In this part, the 
deterministic simulation is supposed to be known at the measurement sites too. The 
associated estimation (or interpolation) incertitude will be neglected. The measurement 
errors are also neglected in a first step. 

Let (Y, S) be a model with residual in which the deterministic simulation S is the 
master variable, to which Y is subordinate (Rivoirard, 2001 and 2012): their cross variogram 
is proportional to Sγ . In this case, when S is known at all Y data points (and at all estimation 
grid cells), the cokriging of Y from Y and S data is coincides with the separated kriging of the 
residual. This case corresponds to the correction of the deterministic simulation as in Eq. 3. 

The model with residual corresponds to the following particular cases:   

- Y and S are intrinsically correlated (the variogram of the residual and that of the 
master variable are proportional) ; 

- Y and S are linked by a linear co-regionalization model, in which all components 
present in S are present in Y (the set of indexes u’ is empty), and such that u uρ ω  is constant 
for all the common structures indexed by u. Indeed, as the uγ  constitute a free system, ones 

have  YS SAγ γ=  with S u
u

γ γ= ∑  and YS u u u
u

γ ω ρ γ= ∑ . 

 External drift kriging corresponds to the linear regression of Y on S at neighborhood 
scale, in which the (spatial, temporal or spatio-temporal) correlation of the residuals is taken 
into account (Rivoirard, 2002). As the coefficients of the regression are not known, the 
variogram of the residuals can be indirectly fitted, comparing the theoretical variance of 
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authorized linear combinations (which “filter” the unknown coefficients of the linear 
regression) with the associated sample quadratic value (Chilès and Delfiner, 2012). In this 
estimation, the amplitude correction on the deterministic simulation S is identical for all 
components, via the coefficients of the linear regression: KDE KDE KDE KDEY S Rα β= + + .  

In the other cases Y (or the residual R) should be estimated by cokriging from the 
observations and the deterministic simulation S values, in order to take into account the 
amplitude ratio and the correlation coefficient which depends on the structural components. 

 The above results remain valid in presence of a nugget component for measurement 
errors on the observations.  

Link with sequential data assimilation   
Sequential data assimilation methods (for a synthetic presentation see for example 

Wackernagel, 2004) present high analogies with Eq. 3. Let 1
a
nY −  be the best estimator of the 

system state at instant tn-1. The system state at instant tn is forecast by 

simulation: 1
f a

n n nY Y −= F . The « analysis » step, i.e. the correction of the forecast from the 
observations nZ  at step n is written 

( )a f f
n n n n nY Y Z Y= + −K H  

where the matrix H makes the link between the observations and the system state. The 
corrective term ( )f

n n nZ Y−K H  corresponds to the estimation of the forecast error    a f
n nY Y−  

from observed residuals. In the absence of spatial correlation between forecast f
nY  and 

observed residuals, this linear correction is analogous to kriging of residual (Chilès and 
Delfiner, 2012). 

When the observations are numerous enough, it would be interesting to control the 
correlation between predicted and observed residuals, in order to improve the “analysis” 
step, thanks to a cokriging from the forecasts and the observations.   

CONCLUSION 
The linear co-regionalization model can be used to describe a great variety of 

situations in order to characterize the spatial or temporal link between a deterministic 
simulation and observations. The examination of the fitted parameters of the bivariate model 
is very effective in analyzing complex systems, and detecting and quantifying the 
imperfections of the deterministic simulations.  

The bivariate model makes it possible to estimate the studied variable from the 
observations, using the deterministic simulation as a covariate. This can be used to make a 
deterministic simulation fit the observations, or to fill the gaps of a time series.  

In the presented examples, the difference of spatial support between deterministic 
simulation and observations is not explicitly examined. The modeling of the links between 
deterministic simulations and observations can thus be improved in order to better take the 
difference of support into account.  
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The presented examples are either in a temporal or in a spatial context. For a spatio-
temporal modeling, it can be necessary to introduce delayed correlation in order to take into 
account approximation of the displacement velocity on deterministic forecasts (for air, rivers 
or groundwater). 
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