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Abstract Various geostatistical simulation techniques rely on the multiGaussian 
model. These methods generate equally probable realisations of a Gaussian 
variable, honouring the first two statistical moments and the spatial variability 
function g(h) of the Gaussian variable. Currently existing techniques are time 
consuming to implement and require advanced computational hardware to process 
real dataset and models with millions of blocks. 
The paper proposes an alternative simulation technique based on a 
multidirectional random walk (RW) of Gaussian variables. This method is based 
on random walks which consider the action of a particle along random directions 
within a real line. The position of the particle in a determined distance h is 
described by independent random increments, each one with the same probability, 
of 50%, to be equal f or –f, where f is the scaling factor of the increments. The 
increments at a certain distance h have a normal distribution, with mean zero and 
variance proportional to the distance and to f². The simulation technique proposed 
is based on random walks starting at a conditioning point (x) and moving to a 
simulated point (x0), spaced by h, generating an error Yrw(h) as a function of 
distance h. This error is added to the value Y(x) to obtain the simulated value 
Ysrw(x+h).  
For multiple RW from different conditioning points (xi), converging to the same 
point (x0), the final result of the RW simulation, Ysrw(x0), is the simple kriging 
estimation of all RW simulations from the conditioning points, Ysrw(xi+hi)). The 
experimental results show this new methodology honoured both statistical 
moments of the Gaussian conditioning points faster than sequential algorithms. 
The scaling factor f can be used for future local simulations (LS) without requiring 
global simulations (GS). 
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Introduction 

The geostatistical simulation techniques have been proposed initially by [14] 
followed by publications of [9] and [2]. These techniques allow better represent 
the complexity of natural phenomena through the generation of probabilistic 
models with multiple equally-probable scenarios. Each simulated scenario 
represents a realisation of a random function (RF) should honour the heterogeneity 
and spatial variability of the regionalized variable of a mineral deposit through the 
reproduction of two statistical moments, mean and variance, and variogram of the 
regionalized variable. 
The idea embedded in most geostatistical simulation methods used for simulating 
continuous variables is to assess the uncertainty in the estimation prior to any 
guess about the value estimated. Models used in this way aim to replicate the 
spatial structure of a data set as a whole rather than provide reliable local estimates 
of an attribute at particular locations. 
Mine production plans, schedules, and blending strategies require knowledge of 
grade dispersion. Because kriged estimates are said to be biased in terms of grade 
dispersion they should not be used for these engineering applications. Equally 
probable models generated by simulation of the deposit are introduced to 
overcome this problem. The simulated model is said to be conditionally simulated 
if it honours values at sampled points and reproduces the same dispersion 
characteristics of the original data set, i.e. the mean, variance and covariance or 
variogram. In a conditionally simulated model it is possible to address questions 
referring to the dispersion of the grades during mining or processing, since the 
dispersion characteristics of the original data are maintained. The better the spatial 
continuity and variability of the real deposit can be described, the better the 
numerically simulated model will be. 
The simulated data, zsi(x) is the ith realisation of the random function Z(x), in the 
same way that the real values z(x) are also considered realisations of a random 
function, both exhibiting the same two first order moments. Simulations which 
honour sample data at their location are called conditional. 
Thus, from a perspective of two-point statistics, there is no difference between the 
real and simulated values. The interesting aspect of conditional simulation is that 
simulated values can be generated in all geographical positions covering the whole 
deposit and not only at the sampled sites. The penalty for obtaining this denser 
grid of values through the deposit is an increase of the estimation error, or, in 
geostatistical jargon, the variance of the estimation obtained through conditional 
simulation is higher than the variance obtained using estimation methods. 
[17] discusses the simulation algorithms developed for petroleum applications. [6] 
compare the performance in terms of local accuracy (average quality of the 
estimate) obtained by using various simulation algorithms in distinct data sets, 
concluding that sequential Gaussian algorithms provide better results than 
sequential indicator algorithms. 
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A family of geostatistical simulation methods generally called sequential 
simulation algorithms [8]; [10] differs significantly from the algorithms first 
introduced (see [12] for a comprehensive discussion). Most of the early methods 
(turning bands for example) draw random values from unrelated distributions and 
use some moving window average to imprint spatial correlation. The novelty of 
sequential methods is the idea of randomly drawing the values from distributions 
somehow related using the decomposition of the conditional cumulative 
distribution function (ccdf) of a random function. 
Geostatistical simulation is used in mineral industry for the economic evaluation 
of projects and risk analysis. Although widely enshrined in that domain, the 
geostatistical simulation has its limitations for routine applications due to the large 
computational time and also because of the need to simulate all the mineral 
deposit models to generate ergodic simulated models.  
This paper reports the results of a new simulation algorithm based on random 
walks with less computational effort. The reduction on computational time allows 
the use of simulation methods routinely in the mining industry.  
Random walk simulations can be used to make local simulation practical, using 
the parameters of the previous study from a global simulation (variography, 
Gaussian anamorphosis, the search strategy, etc). This local simulation is directly 
applied during mining phases when there is a constant addition of new data to the 
original conditioning dataset.  
A case study using a synthetic Gaussian dataset was used to illustrate the 
methodology. These 416 samples are isotropic and were collected at a regular 
grid. The simulations tests used an omnidirectional variogram with one spherical 
structure, ranging 20 meters, to simulate one Gaussian variable in 10,000 points in 
two-dimensional dense grid. 

Gaussian distribution and random walk 

The probability distributions laws are not a pure abstraction without physical 
sense, but the mathematical expression of the fact that there are laws governing 
the random phenomena of nature [18]. These laws are established experimentally 
and directly or indirectly based on experimental data. 
The normal distribution is the most important of all statistics and has a special 
feature is a "threshold law" to which all other laws tend their distributions. Many 
processes in nature lead to the normal distribution, including the measurement 
errors. The concept of error estimation is applied in geostatistics and simulation 
techniques using Gaussian transformed variables to the original variables. 
 
According to [5], the definition of RW considers a particle performing a random 
path on a real line. The particle position at time t is described by random 
independent increments, each having probability ½ equaling 1 and ½ equaling –1.  
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If the increments at distance h have a normal distribution, the random walk is 
called Brownian motion. [5] defines one dimension Brownian motion to be a 
random process X(t) such as: 

i. with probability 1, X(0) = 0 and X(t) is a continuous function of t; 
ii. for any t >=  0 and h > 0 the increment X(t+h)-X(t) is normally 

distributed with mean 0 and variance h; 
iii. the increments X(t2)-X(t1)  are independent. 

[15] and [16] constructed a dynamical model based on random walk (RW). The 
experimental RW showed in figure 1 presents the influence of the use of binary or 
ternary path on the increment variance. 

 

 
Figure 1 Experimental random walk (Ribeiro and Carvalho 2002, adapted from Falconer 
1990) 

 
[4], based on [13], wrote that the semivariogram for a Brownian function can be 
expressed by: 

 

γ ( ) [ ( ) ( )]h E Z x Z x h h H= − + =
1
2

2 2  ( 1 ) 

 
where Z(x) and Z(x+h) are random variable at points x and x+h respectively, 
which are separated by the Euclidian distance h, and H is the scaling power 
parameter with the value 0.5 in the case of normal Brownian motion. According to 
[4], as H varies in the interval [0,1], a whole family of statistical self similar 
variations can be obtained. These series can be simulated by substituting the 
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normally distributed Gaussian error in the equation for Brownian motion by a 
discrete fractional Gaussian noise.  

Conditional Simulation 

For a given selective mining unit (SMU) it is possible to evaluate the local 
uncertainty through the local cumulative distribution function (lcdf) obtained by 
conditional simulation. Stochastic conditional simulation is able to quantify 
variability on geological attributes such as grades or any other attribute relevant to 
a given mining project. Variability can be assessed by constructing multiple 
equally probable numerical scenarios. The combination of these scenarios can 
provide an assessment of the so-called space of uncertainty. 
The most commonly used stochastic conditional simulation algorithms are the 
Sequential Gaussian [7], Sequential Indicator [1] and the Turning Bands method – 
TB [14]. The simulation of values of an attribute Z using turning bands, 
conditional to the original data, is performed in two stages, both running in the 
Gaussian space. In the first stage, the values obtained at node of a grid are not 
conditional to the original data (normal). However, they reproduce the covariance 
model of these data. In the second stage, the values obtained at each location are 
made conditional to the original data (normal). The final generated values are 
eventually back-transformed to the original variable space. The method is 
presented by [3], and is nowadays consolidated and widely used among the 
geostatistical community within the mining industry. More recently, [11] presents 
some alternatives for algorithms to simulate values in one given line respecting the 
related model of covariance. The TB non-conditional simulation methods consist 
of N lines simulate RF independently with the same covariance C(h). The 
simulated values at the nodes of regular grid are obtained by projecting each of the 
N lines spread uniformly. 
The random variables should be multiGaussian. The results of the conditional 
simulations, Ycs, is the sum of two independent Gaussian functions. The 
multiGaussian hypothesis should be checked at least for the bivariate case. i.e 
verifying  biGaussianity from pairs of variables (Y (x), Y (x +h)). 
 
 

Conditional RW Simulation: preserving the unit variance 
through background noise 

Similarly to TB simulation, the proposal random walk simulation technique is 
based on conditioning points, generating an error Yrw as a function of distance h 



6 

 
which should be added to the value of Y(x) to obtain the simulated value 
Ysrw(x+h). 
Although, for cases of multidirectional random walk from more than one 
conditioning point, simple kriging (SK) weights are used according to: 
  

( ) ( )[ ]∑ +=
n

i
xxrwixixsrw ii

hYYY
00

* λ  ( 2 ) 

 
where: li is the simple kriging weight; x0 is the point to be simulated; xi is the 
conditioning point; and n is the number of conditioning points. The conditioning 
points are honoured and the variability at the simulated grid nodes is proportional 
to the distance to the sample points. 
The simulations will be obtained through the summation of different random 
functions, centered at each sample, weighted by a function of the distance between 
the grid node and the sample derived from point simple kriging. It can be shown 
that, for sufficiently large grids, the variance of the final simulation is a linear 
function of the variance of the random function chosen. 
The final variance of Ysrw depends on weighting process of variogram function 
used, configuration of sample distribution and size of the grid. Any estimation 
based on simple kriging, or any other form of distance weighting interpolation 
algorithm has the variance of the samples significantly smoothed out. 
The constants inform how much variance is lost during interpolation. The restore 
of unit variance was carried out adding random values to the final simulation. The 
variance can be controlled by simply scaling of the random function. Scaling a 
function by a factor f will result in a variance multiplied by f². 
In the case of multidirectional random walk, with n steps of size +f and –f, the 
scaling factor can be chosen to have the desired variance. Equation 3 resumes the 
relation between the scaling factor f and the variance of the randoim walk 
simulation (σ2

Ysrw). 

YskY afsrw
222 σσ +=  ( 3 ) 

where a is the angular coefficient of the regression line between σ2
Ysrw versus f2, 

σ2
Ysk is the simple kriging smoothed variance of all estimated nodes. 

Figure 2 presents one example of RW simulations using Gaussian conditioning 
points with unit variance (Figure 2A) and the simple kriging results using different 
scaling factors; f = 0 (Figure 2B), f = 0.14 (Figure 2C), and f = 0.2 (Figure 2D). 
The respective variance of the simulations for each scaling factors are 0.82, 0.91 
and 1.01. 
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Figure 2 Conditioning Gaussian data (A) and RW simulation using scaling factors; f = 0 
(B), f = 0.14 (C), and f = 0.2 (D).  

RW conditional simulation can be summarized as: 
 
i. Normalization of the original data , Z(xi) to Y(xi); 

ii. Calculate and model the variogram of Gaussian transformed data;  
iii. Build a dense regular grid (xi) within the sampled stationary field; 
iv. Use simple kriging at a regular grid to calculate the smoothed variance 

(resulting for the interpolated values) for f = 0; 
v. Run RW simulations using different seeds for any non zero value for 

experimental f2; 
vi. Fit the linear function for different seeds between experimental f² and 

s2
Yrw. Find the optimal f to obtain unit variance for Gaussian simulated 

grid nodes; 
vii. Apply the optimal scaling factor f of background noise to perform the 

RW simulations; 
viii. Back-transformation of Gaussian simulated data. 
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2D Conditional RW Simulation 

This study presents a case for 2D simulations in a synthetic Gaussian database. It 
was selected 416 samples at a regular grid. These samples were used to condition 
the simulations and used for spatial continuity modeling. The 2D grid ranges from 
1 to 100 m along x and y axis, totalizing 10000 nodes and the variogram is 
omnidirectional with 20 m range. The distribution of the variable is Gaussian with 
mean and variance close to zero and one, respectively. Figure 3 shows the spatial 
distribution of the conditioning points, the histogram and variogram of the 
Gaussian variable Y(xi). 

 
 

 
Figure 3 Spatial distributions of the conditioning Gaussian data, their histogram and 
variogram  

 
In order to calculate the scaling factor f, a linear regression was calculated 
between the variance of global RW experimental simulated data and the scaling 
factor f2. The direct simple kriging of the data was used to calculate the smoothed 
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variance of the simulation with scaling factor f equal zero. To fit the linear 
function variance versus squared scaling factor f2, six more experimental 
realisations of RW simulations, using unit scaling factor (f=1) with different 
seeds, were carried out. The linear regression calculated is represented in the 
equation 4 below: 

8103.09302.0 22 += fsrwYσ  ( 4 ) 

From that equation, the optimal scaling factor f was then calculated taking the 
square root of the scaling factor f2 in the case of unit variance. This procedure  
ensures variance of Gaussian simulated data around the unit value. The optimal 
scaling factor f calculated was 0.4516 (square root of f2 = 0.204). Figure 4 
presents the linear regression used to find this optimal value of f. 
  

 

 
Figure 4 Linear regression between variances of six realisations from 10000 simulated 
Gaussian grid nodes and the variances of simple kriging interpolated model (f = 0) versus 
the squared scaling factor (f). 

 
Table 1 shows one example of RW simulation where the scaling factor f=0.4516 
was applied, for a specific node x0 (50,50), using 7 conditioning samples and the 
variogram model of figure 3. The final result for this node simulation was 
Ysrw(50,50) = -1.602. This value can be decomposed into two factors: the 
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background noise factor, Yrw(50,50) = 0.377, and the simple kriging estimation, 
Ysk(50,50) = -1.976. 
 
This example was extended to a complete 2D grid in order to generate six equally 
probable scenarios considering a conditional geostatistical RW simulation for the 
Gaussian variable. Figure 5 shows six simulated images for all 10000 grid nodes 
used in this example. Data and variogram used to condition these simulations were 
the ones depicted in figure 3. Images show  similarity among the six realisations  
due to the conditioning data, however differences among realisations are noticed.  

 

Table 1 RW simulation for a specific grid node x0 (50,50) – simple kriging interpolation. 
C_X and C_Y are data point coordinates. Y(xi) is the normal score at sampled locations. hi 
is the separation distance from data locations to the grid node being simulated. Yrw(xi+h) is 
the RW simulated value at the grid node obtained from data i. λi is the simple kriging 
weight assigned to sample i when interpolating at node x0. Ysrw is the simulated value at the 
grid node 

Sample C_X C_Y Y(xi) hi Yrw(xi+h) λi Ysrw 
x1 43 47 -0.35 7.6 0.90 -0.03 0.55 
x2 45 55 1.13 7.1 1.36 -0.01 2.49 
x3 47 51 -1.19 3.2 1.36 0.33 0.17 
x4 49 47 -2.85 3.2 -0.45 0.33 -2.52 
x5 51 43 -1.93 7.1 -0.45 -0.01 -1.94 
x6 51 55 0.03 5.1 -0.45 0.08 0.11 
x7 53 51 -2.05 3.2 0.45 0.33 -1.72 

node x0 50 50 -1.976 0 0.377 1.05 -1.602 
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Figure 5 Six realisations of the random walk simulation for Gaussian variable in 2D 
dimensions  
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Figure 6 Simulation decomposed images and respective variograms: upper – simple kriging 
(Ysk) of Gaussian transformed data; center – random walk background noise (Yrw); lower 
– simulation with random walk (Ysrw). Respectives variograms are on the right side. The 
lower graph shows the nested structures of γYsrw = γYrw + γYsk 
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The decomposition of the simulated image in two factors is illustrated at figure 6. 
RW simulation is a result of summation of simple kriging interpolation of 
Gaussian transformed data and a background noise. Their respective variograms 
are showed on the right side of the simulated images. The final variogram of the 
simulated data is a nested variogram with two structures: the background noise 
variogram and the smoothed variogram derived from the simple kriging 
interpolated model. 
 
The experimental variograms of six realisations (Figure 7) show good adherence 
to the experimental variogram of the samples. The sills for each of  the six 
experimental simulated models fluctuate ergodically around the unit. This 
behavior is expected when is used different seeds with same scaling factor. 
 

 
Figure 7 Variograms from six RW simulations using f = 0.4516  

Local Conditional Simulation (LS) 

The reason to develop  RW simulation is its capacity  to perform local simulation 
(LS). It is important to take into account one essential assumption on LS: it is 
designed to simulate only sub portions within a larger stationary domain. For that 
domain the Gaussian anamorphosis function is valid for any new updated dataset. 
A good parameter to control the quality of simulation is the mean weight of simple 
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kriging (λm). High values of λm mean low conditioning simulations or border 
regions of sampling domain. 
The local simulation was tested using the total conditioning dataset within a 
subzone (local window) from the large grid comprising 100 grid nodes. This test 
was conducted to evaluate the differences between running a global simulation 
within the entire domain and taking only a specific region of 100 grids to compare 
the results by running local simulation at the sub grid only. 
Figure 8 shows the location of the simulated region and the correlation matrix  
(table 3) shows the correlations between six realisations by running global 
simulations (GS) and six local simulation (LS). 

 
Figure 8 Local RW simulations – 100 grid nodes. Coloured square region shows Gaussian 
simulated results 

The comparison between the six local and global simulations was made after 
the back-transforming the simulated data into  Zsrw. In that case, the Z variable 
considered was the iron grade (Fe %) whose distribution was taken from a high 
grade iron deposit. Figure 9 shows six realisations of RW simulation in the 
original scale (after back-transformation). 

The statistical parameters presented in the tables 2 and 3 indicate that the local 
mean, variance and correlation between global and local simulations are coherent. 
The local simulated mean and variance are within the range of the respective 
parameters of global simulated data. There is no visible bias among LS and GS. 
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Figure 9 Six global simulations of iron grade (fe_si %) back-transformed from Gaussian 
RW simulations using normal score function. Black square in graphs shows the location of 
local simulation 
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Table 2 Statistical parameters for a panel with 100 grid nodes, using global (GS) and local 
(LS) simulations with different seeds. Values refer to iron ore grades.  

VARIABLE Count Minimum Maximum Mean Std.Dev. Variance 
fegs1 100 65.49 68.88 67.40 0.84 0.70 
fels1 100 64.98 68.86 66.82 0.95 0.90 
fegs2 100 66.07 68.83 67.47 0.62 0.39 
fels2 100 64.75 68.83 67.08 0.98 0.96 
fegs3 100 64.28 68.80 66.75 0.86 0.74 
fels3 100 65.73 68.80 66.97 0.62 0.38 
fegs4 100 64.53 68.80 66.91 0.87 0.76 
fels4 100 64.68 68.80 67.19 0.90 0.81 
fegs5 100 66.09 68.80 67.26 0.51 0.26 
fels5 100 64.91 68.88 66.73 0.85 0.72 
fegs6 100 64.71 68.90 66.79 0.98 0.96 
fels6 100 63.53 68.87 66.22 1.41 1.99 

 
 
 
 

Table 3 Correlation coefficients matrix between six iron grade global simulations (fegs) and 
six iron grade local simulations (fels) for a grid of 100 simulated nodes using different 
seeds 

Zsrw fegs1 fels1 fegs2 fels2 fegs3 fels3 fegs4 fels4 fegs5 fels5 fegs6 fels6 

fegs1 1.00 0.84 0.89 0.85 0.87 0.74 0.75 0.87 0.73 0.78 0.81 0.83 

fels1 0.84 1.00 0.82 0.72 0.70 0.72 0.86 0.77 0.66 0.82 0.65 0.85 

fegs2 0.89 0.82 1.00 0.77 0.80 0.63 0.79 0.87 0.69 0.73 0.73 0.68 

fels2 0.85 0.72 0.77 1.00 0.78 0.79 0.55 0.85 0.70 0.72 0.76 0.81 

fegs3 0.87 0.70 0.80 0.78 1.00 0.59 0.59 0.89 0.68 0.64 0.80 0.71 

fels3 0.74 0.72 0.63 0.79 0.59 1.00 0.61 0.58 0.76 0.88 0.72 0.81 

fegs4 0.75 0.86 0.79 0.55 0.59 0.61 1.00 0.62 0.60 0.73 0.55 0.70 

fels4 0.87 0.77 0.87 0.85 0.89 0.58 0.62 1.00 0.69 0.63 0.74 0.69 

fegs5 0.73 0.66 0.69 0.70 0.68 0.76 0.60 0.69 1.00 0.71 0.57 0.62 

fels5 0.78 0.82 0.73 0.72 0.64 0.88 0.73 0.63 0.71 1.00 0.75 0.79 

fegs6 0.81 0.65 0.73 0.76 0.80 0.72 0.55 0.74 0.57 0.75 1.00 0.77 

fels6 0.83 0.85 0.68 0.81 0.71 0.81 0.70 0.69 0.62 0.79 0.77 1.00 
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Conclusions 

The combined use of random walk, or Brownian motion, and simple kriging 
allows conditioned simulation of Gaussian data which honour the mean, variance 
and the variogram of the conditioning data. The final simulated value is 
summation of two independent factors: the simple kriging estimation of the 
Gaussian variable and the background noise calculated by simple kriging of  
multiple RW, starting at the conditioning points and moving until the simulated 
node. 
The variance can be controlled by simply scaling a random function. Scaling a 
function by a factor f will result in a variance multiplied by f². The scaling factor 
of the background noise f is obtained experimentally through linear regression 
between f2 and the variance of random walk simulation (Ysrw), using as a 
constant the variance of smoothed simple kriging estimation. 
The scaling factor f can be used for future simulations, considering data update, or 
for local simulations in specific region of the mine. The experimental results 
indicate that this new methodology honoured both statistical moments of the 
Gaussian conditioning points faster than sequential algorithms. Future studies can 
be done considering real data set and multiple structures, different geological 
domains and multiple variables. Due to its simplicity this algorithm could be 
easily adapted to traditional algorithms which use Gaussian transforms and simple 
kriging.  
This methodology can be used to generate new tools for grade control system 
updating large model locally. 
We do not access the reality exactly but we can measure how  close we are  and 
manage this risk during the decision making process. 
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