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1 Introduction

We consider the problem of clustering functional data indexed by the sites of a
spatial finite lattice, motivated by the analysis of the environmental data contained
in the Surface Solar Energy database (NASA 2010). To this purpose, we exploit
the bagging Voronoi-classifiers algorithm introduced in Secchi et al. (2012), based
on repeatedly partitioning the investigated area in random neighborhoods, and on
replacing the original data set with a reduced one, composed by local representatives
of neighboring data. In this way we obtain many different weak formulations of the
analysis, whose results are then bagged together to give a conclusive strong analysis.

The analysis of high–dimensional spatial data is a recent topic in the statistical
literature (see the interesting review by Delicado et al. 2010), and very often the fo-
cus is on prediction rather than being on classification problems. Here we present an
application of the bagging-Voronoi strategy for unsupervised classification of func-
tional data (Secchi et al. 2011, 2012) to the analysis of the Surface Solar Energy
database (NASA 2010). This methodology is completely non-parametric, since it
does not rely on any explicit parametric assumption for the spatial dependence of
functional data. Moreover, the computational cost of this approach is low, since the
analysis of the original data set is simply replaced by the analyses of smaller data
sets: this fact makes the bagging Voronoi-classifiers approach particularly appealing
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for the analysis of large data sets, and it opens to parallel computing implementa-
tions.

The analysis here presented is carried out to investigate the possible exploita-
tion of solar energy for power production in different areas of the planet, which
strongly depends on solar irradiance and atmospheric conditions (Richter 2009). In
particular we aim at identifying different homogeneous macro-areas, interpretable
in terms of the observed phenomenon, and not captured by traditional unsupervised
functional classification procedures (Tarpey and Kinadeter 2003). The Surface Solar
Energy database consists of 47520 solar irradiance patterns along the year observed
in 47520 worldwide non-polar districts of a non-uniform global lattice formed by
meridians and parallels, and covering the surface of the earth.

This communication is structured as follows. In Section 2, the bagging Voronoi-
classifiers algorithm for clustering spatially dependent functional data is described.
Section 3 focuses instead on the application of the bagging Voronoi-classifiers algo-
rithm to irradiance data. The analysis of real data sets is performed in R (R Devel-
opment Core Team 2006).

The properties of the bagging Voronoi-classifiers algorithm are deeply discussed
in Secchi et al. (2012), where its efficiency - with respect to non-spatial clustering
techniques - is tested and its behavior investigated through a large battery of MC
simulations. Please refer to the latter for further details.

2 Bagging Voronoi-classifiers for clustering spatially dependent
functional data

Consider a possibly non uniform lattice of sites S0, and consider the situation in
which a functional datum is observed in each site x ∈ S0. We have in mind the
following generating model for our functional data set: a latent field of labels Λ0 :
S0 → {1, . . . ,L} is defined in each site x ∈ S0, such that Λ0(x) is the true unknown
label associated to the site x. From an application perspective, this field is thought
to sum up characteristics of the considered area which are interesting for the scopes
of the analysis. Then, given the field Λ0, the functional observable data are thought
independently generated in each site x ∈ S0 from a distribution indexed by Λ0(x).
The main purpose of the analysis is the reconstruction of the unknown field Λ0 of
labels, based on the clustering of the functional observed data indexed by the sites
of S0. Hence, we need a procedure which is able to perform the classification of the
observed functional data, thus returning as a final result a label assignment for each
site of the lattice.

The following box reports the pseudo-code scheme of the algorithm. The proce-
dure is a bagging-inspired clustering algorithm, composed by a bootstrap sampling
phase, articulated in three basic steps, and by an aggregation phase (see Breiman,
1996 for details on bagging procedures):
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Algorithm. Bagging Voronoi-classifiers.

Bootstrap:
Initialize B, n, p, K. Choose a metric d(·, ·).
for b := 1 to B do
step 1. randomly generate a set of nuclei Φb

n = {Zb
1, . . . ,Z

b
n}

among the sites in S0: for i = 1, . . . ,n, Zb
i

i.i.d.∼ U (S0), where U is
the uniform distribution on the lattice. Obtain a random Voronoi tes-
sellation of S0, {V (Zb

i |Φb
n )}n

i=1, by assigning each site x ∈ S0 to the
nearest nucleus Zb

i , according to the specified distance d(·, ·);
step 2. for i = 1, . . . ,n, compute the function gb

i , acting as lo-
cal representative, by summarizing information carried by the func-
tional data associated to sites belonging to the i-th element of the
tessellation V b

i :=V (Zb
i |Φb

n );
step 3. perform dimensional reduction of the local representa-
tives {gb

1, . . . ,g
b
n} by projecting them on the space spanned by a

proper p–dimensional functional orthonormal basis, thus generat-
ing the p-dimensional scores vectors {gb

1, . . . ,g
b
n}, which are then

clustered in K groups according to a suitable unsupervised method.
end for
Aggregation:
perform cluster matching: for k = 1, ...,K, and b = 1, ...,B, indicate
with Cb

k the set of x ∈ S0 whose label is equal to k, and match the cluster
labels across bootstrap replicates, to ensure identifiability.
for x ∈ S0 do
• calculate the frequencies of assignment of the site to each of
the K clusters along iterations, i.e., πk

x = #{b ∈ {1, ...,B} : x ∈
Cb

k}/B, ∀ k = 1, . . . ,K;
• compute spatial entropy ηK

x for each site x ∈ S0.
end for

The general idea of the procedure is finding, at each replicate of the three steps,
a single weak classifier, which exploits a different specific structure of spatial de-
pendence; in this way a coarse estimate of the unknown latent field of true labels Λ0
is obtained. After B replicates, by bagging together the estimates given by all weak
single classifiers we finally end up with a more accurate global classifier, which in-
cludes results of all single replicates. Hence, higher values of B, imply a higher ac-
curacy of the final estimate (the reconstruction of the latent field of labels Λ0). More
precisely, in step 1 of the bootstrap sampling part of the algorithm, neighboring
groups of data are isolated by partitioning the lattice via a random Voronoi tessella-
tion, to capture potential spatial dependence. The property of Voronoi tessellations
which justifies their use in the nonparametric treatment of spatial dependence is a
consistency property, proven in Penrose (2007) in the context of stochastic geome-
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try. In step 2 local information is summed up via the identification of a local rep-
resentative for each element of the tessellation, guided by the rationale that neigh-
boring data are most likely drawn from the same functional distribution. In step
3 relevant functional features in the data are detected via functional dimensional re-
duction of local representatives; the subsequent clustering in K groups (performed
according to a suitable unsupervised method) is based on the projections of local
representatives on the space spanned by the obtained basis. In the aggregating phase
a final classification map of the lattice S0 is obtained: results of each replicate are
bagged together to ensure a stronger final result. Note that cluster matching
is needed for the coherence of cluster assignments across replicates. The aggregat-
ing strategy in the case of clustering is the computation of the frequency distribution
of assignment of each site to each of the K clusters along the bootstrap replicates: in
this application, a final assignment to one of the K clusters for each site in S0 is ob-
tained by selecting the label corresponding to a mode of the frequency distribution.

Each particular implementation of the procedure depends on some parameters
that require to be carefully tuned. Among these ones, the most relevant are the di-
mension n of the Voronoi tessellations, and the correct number K of clusters. The
parameter n, which sets the dimension of the Voronoi tessellations and thus the num-
ber of local representatives to be computed, has great influence on the algorithm
behavior, since it induces a strong bias-variance trade-off:

• as n decreases, noise is reduced in the local representatives sample, since local
representatives are weighted sample means calculated on sub-samples that are
larger on average (minimal variance). However, at the same time the associated
Voronoi tessellation follows less accurately the boundaries in the true latent field
of labels, thus including different mixture components in the computation of local
representatives (maximal bias). The limiting case is n ≡ 1, when all sites in the
finite lattice belong to the same Voronoi element, and are thus used to compute a
single representative.

• As n increases, the resulting Voronoi tessellation approximates more accurately
the boundaries of the latent field of labels (minimal bias), but at the same time
the variability of the representatives increases since the average number of data
per element decreases (maximal variance). The limiting case is n ≡ |S0|, when
all sites in the finite lattice are nuclei, and thus the local representatives sample
coincides with the original dataset.

The optimal value of n determined by this trade-off depends both on the strength
of the spatial dependence, and on the mixture components of the distribution gener-
ating the functional data. In particular, the quality of the final classification is here
evaluated by means of a spatial entropy criterion that consequently drives also the
choice for n. Consider the frequency distribution of assignment πx = (π1

x , . . . ,πK
x ) of

each site x ∈ S0 to each of the K clusters generated by the B replicates. The entropy
associated to the final classification in the site x ∈ S0 is obtained as

ηK
x =−

K

∑
k=1

πk
x · log(πk

x). (1)
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Hence, the more the frequency distribution πx is concentrated on one particular
label, the lower the index (1) is, and the more the classification is precise and stable
along replicates. Conversely, when frequencies are more uniformly spread over all
labels, the value of the index (1) is higher, and uncertainty associated to the final
classification in x is greater. A global evaluation index can also be computed as the
average normalized entropy

ηK =
∑x∈S0

ηK
x

log(K) · |S0|
, (2)

including the contribution to the final classification quality of all sites in S0. For
comparisons over different choices of K, the quantity ηK

x in equation (2) has been
normalized by its maximum value. Since the index expressed in (1) is a measure of
the uncertainty associated to the final classification, we expect the value of ηK to be
low if n is properly chosen in accordance to the (unknown) spatial dependence in the
latent field of labels, and thus the optimal value of n to be the one minimizing ηK .
Indeed, values of n smaller than optimal induce unstable (along replicates) weak
classifiers, since many elements are expected to cross boundaries between regions
associated to different labels. Values of n larger than optimal induce unstable weak
classifiers as well, since they are affected by the high variability of the representa-
tives.

One might guess that spatial entropy is a good criterion also for the selection
of the most proper value for K, since we expect the final classification to be less
uncertain also for an optimal choice of K. Indeed, the simulation studies described
in Secchi et al. (2012) clearly point out that the entropy criterion generally leads to
a choice for K more parsimonious than necessary. Indeed, the problem of the choice
of an optimal K is a well–known issue in cluster analysis, and a general strategy to
tackle it has not yet been proposed. A possible approach, which we will adopt in the
application described in Section 3, is based on the analysis of the following index
associated to the final classification:

θ =
tr(SB)

tr(SB +SW )
, (3)

where SB and SW are the final between and within cluster sum of squares matrix,
respectively.

3 A case study: clustering irradiance data

We now illustrate an application of our classification algorithm to irradiance data to
investigate the possible exploitation of solar energy in different areas of the planet.
In particular, we try to identify areas of the planet which are optimal with respect to
the positioning of solar power collectors by considering parameters, which depend
on direct insolation, suited for sizing batteries or other energy-storage systems. Stor-
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Fig. 1 Results of Bagging Voronoi-classifiers algorithm on buffer capacity data from the Surface
meteorology and Solar Energy database: in the left panel, average normalized entropy obtained
with different choices of K and for n = 100,300,500,1000. In the right panel, values of the index
θ introduced in (3) associated to the final classification with K = 2, . . . ,10, and for n = 300 and
n = 500.

age devices must indeed be designed to withstand continuous below–average con-
ditions in various regions of the globe. More precisely, we analyze the maximum
deficit below average value of solar radiation incident on a horizontal surface over a
consecutive–day period (kWh/m2), which is strictly related to the equivalent number
of NO–SUN or BLACK days, and which is also increasing in the monthly average
irradiance (see NASA 2010 for details). From an engineering point of view, this
quantity is considered as a proxy of the buffer extra-capacity that is needed to be in-
stalled in order to fulfill the possible gaps in energy supply provided by solar power
plants. These gaps, in a particular site at a particular time of the year, can be due
to unfavorable environmental conditions. From now on, we will name this quantity
buffer capacity.

Rough data consist of vectors in R12 indexed by the sites of a spatial lattice.
In each site, the 12 measures correspond to the values of the monthly maximum
energy deficit with respect to the monthly average. Both the maximum and the
average values are computed over the 22 years time period from July 1983 to
June 2005. Sites are located on a non–uniform lattice S0 =

∪
λ∈Z1;θ∈Z2

Aλθ , where
Z1 = {−180,−179, ...,178,179} and Z2 = {−66,−65, ...,65}: each element Aλθ
is the portion of the earth surface which is included between the meridians at lon-
gitude λ and λ + 1 in degrees, and between the parallels at latitude θ and θ + 1
in degrees. This lattice is of course non–uniform, and includes 47520 worldwide
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Fig. 2 Results of Bagging Voronoi-classifiers algorithm on buffer capacity data from the Surface
meteorology and Solar Energy database: normalized spatial entropy maps associated to the classi-
fication with K = 5 (left) and K = 6 (right). Colors from red to white correspond to values from 0
to 1; higher values identify areas where classification is more uncertain.

non–polar districts. In each site of the lattice, we observe the buffer capacity Y ν
λ ,θ

for each month ν = 1, . . . ,12. For each site, we obtain a functional datum Yλ ,θ (t)
by smoothing {Y 1

λ ,θ , . . . ,Y
12
λ ,θ} with a Gaussian kernel with bandwidth equal to 1.5:

the collection of these functional data, indexed by the sites of S0, is the input of the
Bagging Voronoi-classifiers algorithm.

For this application, we fix the number of bootstrap replicates to B = 100 and
we test different values for the number n of elements of the Voronoi tessellation
and the number K of clusters initializing the clustering algorithm. The n elements
are drawn from a uniform distribution on S, the surface of the sphere of diameter
equal to the earth. The set of nuclei for the Voronoi tessellation is then chosen by
selecting the n sites among those in S0 nearest in terms of geodesic distance to each
of the n generated elements. We then use a Gaussian isotropic kernel to calculate
local representatives, and we choose the first p = 3 functional principal components
to project data, since they explain a proportion of total variance that exceeds 95%.
Finally, for clustering the n representatives we use K-means with the L2 semi–metric
induced by the principal components.

In Figure 1, for different values of n and K, the performance of the Bagging
Voronoi-classifiers algorithm is evaluated both in terms of average normalized en-
tropy (i.e., sharpness of the image) and in terms of the index θ defined in (3) (i.e.,
differences among clusters). In the left panel of Figure 1 the values of the average
normalized entropy are reported. The first fact to be noticed is that for most values
of K, n = 500 provides a good choice to obtain a neat image. For small values of
K, n = 500 is actually a minimum over the tested values, and it is hence chosen for
setting the algorithm. Secondly, given n = 500, one can see that, in terms of classi-
fication sharpness, good values of K seem those between 3 and 7. In particular, two
local minima are observed for K = 3 and K = 5.
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Fig. 3 Results of Bagging Voronoi-classifiers algorithm on buffer capacity data from the Surface
meteorology and Solar Energy database. In the top panels, final classification maps obtained via
a majority vote on frequencies of assignment, and by setting K = 5 (left) or K = 6 (right). In the
bottom-left panel, a set of functional local representatives obtained with n = 500 in one of the iter-
ations of the algorithm and clustered with K = 5; the colors for the plot are chosen coherently with
the final classification map in the above panel. In the bottom-right panel, the same set of functional
local representatives is clustered with K = 6, and colored coherently with the final classification
map in the above panel.

To further investigate the choice of K, in the right panel of Figure 1 the values
of the index θ defined in (3) are reported as a function of K for two values of n.
Notice that the shape of the graph is robust with respect to the dimension of the
Voronoi tessellation. The plot suggests K = 6 as the maximum reasonable number
of clusters. Greater values of K are not paid off by a significant improvement in
the description of data. Slightly smaller values for K (K = 4,5) seem admissible as
well, even though minor features are probably lost. Values K = 2,3 are definitely not
suggested. On the whole, K = 5 and K = 6 seem to be good choices for obtaining a
spatially neat classification, with important differences among clusters. This is con-
firmed by inspection of Figure 2, where the two maps of spatial normalized entropy
obtained for K = 5 and K = 6 are reported (left and right panel, respectively). Both
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plots show a neat classification, even though the one corresponding to K = 5 seems
more reliable. In Figure 3 (top panels), the final clusters obtained with K = 5 and
K = 6 are reported on the Earth surface. The two classifications do not contradict
each other; on the contrary, the latter is a refinement of the former supporting the
robustness of the obtained classification.

In particular, for K = 5, the Bagging Voronoi-classifiers algorithm identifies dif-
ferent homogeneous macro-areas which – prima facie – seem interpretable in terms
of the observed phenomenon. A climatological analysis, which is beyond the scopes
of this paper, could of course deepen their explanation. Indeed, the same macro-
areas are not captured by customary unsupervised classification procedures, that do
not take into proper account the spatial dependence among data. The final results for
the choice of K = 5 are shown in Figure 3 (left panels). In the bottom-left panel of
the picture, a sample of local representatives is shown, each representative colored
with a label corresponding to the macro-area it belongs to (Figure 3, top-left panel).
The red cluster is characterized by a non-seasonal pattern, and by intermediate av-
erage buffer capacity along the year. It covers Africa, Middle-East and equatorial
America and its presence is not explained only in terms of latitude. From North to
South we can then identify four clusters with seasonal patterns depending on the
hemisphere and on the average buffer capacity along the year: north-low (yellow),
north-high (blue), south-high (violet), south-low (green). It is interesting to note
that, while in the Americas all five clusters are present, the north-high and south-
high clusters are absent in Europe and Africa, and the red cluster is almost absent in
Asia.

The main difference obtained by choosing K = 6 is the fact that a new cluster,
which mostly spurts from the former south-high (violet) cluster, appears along the
equator (see Figure 3, top-right panel). This cluster, depicted in orange, is charac-
terized by a very high seasonality of the buffer capacity (see Figure 3, bottom-right
panel) that makes it strongly unsuited for electricity production by solar power. All
other clusters remain unaffected while moving from K = 5 to K = 6, in particular
the red one. Interestingly, from an engineering point of view, the red cluster is the
one that shows an annual buffer capacity pattern which is optimal in terms of elec-
tricity production by solar power: it needs the minimal buffer capacity installation
(the maximal annual need for energy is the lowest among the five detected patterns),
associated to a constant reliability along the year.
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