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Abstract The application of remote sensing image classification to derive land cov-
ers maps is widely used, because it is a simple and fast procedure. However, these
maps are many times disregarded for land use planning and management due to
the difficulty to assess accuracy, as well as the lack of reference methods to tackle
the problem. Presently land cover classification accuracy assessments are based
solely on the used of the confusion matrix, which is a simple cross-tabulation of
the mapped class against that observed in the reference data at a set of validation
pixels providing a summary of commission (type I) errors and omission (type II)
errors.

Geostatistics framework is appropriate to model spatial variation of the classi-
fication uncertainty. Previous works proposed the use of indicator kriging to local
varying means and sequential indicator simulation with prediction via collocated in-
dicator cokriging. However, two main problems remain unsolved: the incorporation
of distinct spatial error patterns for each thematic class due to its radiometric fea-
tures and previous methodologies do not take into account patch sizes contribution
to uncertainty. In the present work, these two issues are address through the use of
patch size weighted spatial covariance estimation in conjunction within the frame-
work of Direct Sequential Simulation algorithm. Early tests of the methodology
applied to a segment of portuguese landscape shown promising results.
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1 Introduction

The classification of satellite images for producing land cover maps is one of the
most common applications of remote sensing. As any classification model it con-
tains errors of different types which may derive from several origins such as mis-
registration problems, mixed pixels, sensors properties and ground conditions and,
last but not less important, the spatial stationarity assumptions on radiometric data
between the training sites and the application sites. Although classification accu-
racy assessment is now widely accepted as a fundamental component of thematic
mapping investigations it is not uncommon for map accuracy to be inadequately
quantified. Presently land cover classification accuracy assessments are based on
error or confusion matrix, which is a simple cross-tabulation of the mapped class
against that observed in the reference data at a set of validation pixels [20, 2, 17, 18]
providing a summary of commission (type I) errors and omission (type II) errors.

The widely used target accuracy of 85 % of global error can be inappropriate and
that the approach to accuracy assessment commonly adopted in remote sensing is
pessimistically biased [4]. The errors of classification derived from satellite images
are not distributed evenly by all land cover classes: some land cover classes are eas-
ier to discriminate than others and very often the occurrence of mixed pixels of cer-
tain thematic classes difficult the labeling of those classes. Also, a certain real class
tends to be misclassified in a small sub-set of land cover classes which have spec-
tral features that are similar to the real class, and not indiscriminately in any class
[21, 19]. Moreover, fragmented landscapes tend to be more difficult to classify, i.e.,
for a certain thematic class small patches usually tend to produce more uncertain
classifications classes than more continuous patches. Consequently, the spatial dis-
tribution of classification errors is not typically but the confusion matrix and other
metrics derived from it are location- independent measures, thus they dont provide
any information about the spatial patterns of the error. Spatial characterization of
classification errors is of prime importance [3] for the further use of classified the-
matic maps such as characterization of spatial uncertainty areas, evaluation of the
classified themes which can be considered reliable or with the need of local field
samples.

1.1 Current Geostatistical approaches to spatial accuracy
assessment of land cover maps

Geostatistics framework is appropriate to model spatial variation of the classifica-
tion uncertainty. [7] proposed to map local indices of classification quality derived
from local (posterior) conditional distributions functions of thematic classes ob-
tained by indicator kriging with locally varying means [12]. This method integrates
in a unique step reference data (hard data) and the image classifiers posterior proba-
bility vectors (soft data). The same authors proposed the use of Sequential Indicator
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Simulation (SIS) and the multi-phase classification [13, 14, 15] to evaluate the prop-
agation of classification uncertainty on ecological model predictions, using as local
mean values the users accuracy [3], which means that a constant local mean for each
class was used in the conditioning process. This may be too simplistic because often
there is a distinct pattern of the thematic errors over the region (classified area) due
to sensors properties and/or the ground conditions. [1] and [9] used SIS with predic-
tion via collocated indicator cokriging, which is a co-simulation method to generate
stochastic realizations of thematic classes maps for updating cover type maps and
that are suited for the estimation of the spatial distribution of prediction errors. The
use of collocated indicator cokriging for data integration explicitly takes into ac-
count with cross-correlation between hard and soft data [5]. Consequently, the col-
located cokriging estimates are potentially less influenced by sharp local contrasts in
the soft data, then SIS with local varying means. [9] states that this is an advantage,
but their results clearly shown that some of the thematic classes tend to disappear
which in our opinion is a strong disadvantage for this type of applications. For ex-
ample, the water bodies are usually very easy to classify in remote sensing images
when compared with other land cover types and produce very sharp contrasts with
other thematic classes, but water courses (linear) will tend to disappear when using
this method for updating the land cover map, despite of the success of the classifier
in discriminating them. Moreover, different thematic classes may produce distinct
patterns of error and taking into account the spatial cross-correlation between hard
and soft data may blur this pattern. None of the previously described methods take
into account the influence of the uncertainty derived from the size of the patches.

1.2 Problem Statement

Given the shortcomings referred above (1.1), it is proposed in the current work to
develop methodologies for mapping the spatial distribution of classification errors
and updating land cover maps based on geostatistical stochastic simulation that takes
into account the spatial continuity of each land cover class, the differences between
spatial patterns of errors and the influence of uncertainty derived from the size of
patches.

This is achieved mainly adopting three main ideas:

• the use of a weighted variogram (or spacial covariance) [10] in order to filter out
the influence of the noise/uncertainty of patches sizes and get appropriate spatial
structures of the errors

• Incorporation of the spatial patterns and patch sizes of each thematic class into
the model using Poisson kriging [11, 6, 10]. This kriging method is also adapted
to the use of local varying means in order to include the local LULC class (Pois-
son kriging with local varying means)

• The modification of indicator simple kriging (probability kriging [7]) in order to
directly include a measurement error directly related to patch size in a procedure
similar to the one used in block kriging in order to include block uncertainty [8].
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• The incorporation of the referred kriging methods within the framework of Direct
Sequential Simulation [16].

Details of the stated methods are reviewed and applied to estimate probability
fields and uncertainty assessment for each thematic class in the remaining sections.

2 Used Models

2.1 Poisson Kriging Framework

The process of classifying pixel by pixel a remote sensed image can be viewed as
whole as a collection of Bernoulli trials where the probability p of an error occurring
is low and being the number of total image pixels typically very high. That being, the
process of error occurrence in the classification procedure can be globally modeled
by a Poisson process.This reasoning can also be extended in terms of random fields.
It can be assumed that error occurrence for each pixel is also modeled by a Poisson
distribution for each pixel. Thus being, we define for each pixel a random function
of error occurrence with a Poisson distribution:

E (u)∼ Poi(λ ) (1)

where u is a spatial location within the study field D. From the relation between
the Binomial and Poisson distributions, the parameter λ equals n× p where n repre-
sents the number of trials and p its probability of success (in our case, the probability
of a classification error occurring). The classification error probability is assumed
spatially dependent. Hence it defines its own random field:

p ∼ P(u) (2)

The parameter n, which represents the number of trials, can be assumed to be
closely related to the number of pixels classified for a given patch belonging to a
given class. Hence for each class Ci constituted by K morphologically separated
patches Pa j there will be K na j classified pixels:

Ci =
{

Pa1 ∼ na1,Pa2 ∼ na2, ...,Pa j ∼ na j, ...,Pak ∼ nak
}

(3)

where the i, j indexes represent the ith class and its corresponding jth patch pixel
number. The na j values are thus used as an approximation to the true value of n for
each pixel. This leads to the definition for each pixel of the following random field:

E (u)∼ Poi( nai, j ×P(u)) (4)

An error rate random variable can also be defined:
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Z (u) =
E (u)
nai, j

(5)

Measured errors of remote sensed are usually represented by and indicator vari-
able for each u belonging to the Domain D (the classified remote sensed image). In
the present case measurement errors can be represented by indicator variables rep-
resenting extreme values of the random field Z. Thus in the present case the random
field Z is defined for the hard data available as:

Z (uα)∼ I (uα) (6)

where I (u) assumes value 1 at hard data locations where a misclassification is
found, zero otherwise and is undefined elsewhere.

The used procedure then follows from this point the Poisson kriging framework
sequence [6, 10], including the modeling of weighted variograms using the nai, j
weights.

2.2 Poisson kriging with local varying means

The derivation of the Poisson kriging system [10] includes the usual kriging unbi-
ased constrain ∑

N
α=1 λα = 1. If this unbiasedness constrain is removed, a kriging

system similar to simple kriging can be derived:

N

∑
β=1

λβC
(
uα ,uβ

)
+

λα m∗

naα

=C (uα ,u0) (7)

Where the covariances are estimated according to the procedure outlined in [6,
10], using weighted variograms and m∗ is the weighted mean [6] of the rate Z (u).
The estimator of P(u0) at location u0 is thus modified as follows:

P(u0) =
N

∑
α=1

λα

(
Z (uα)

na(uα)
−m(uα)

)
+m(uα) (8)

where m(uα) is the expected value of P(u0). In this way, the soft data provided
by the classified remote sensed image can be incorporated in the Poisson Kriging
framework.

2.3 Simple Kriging with hard data error incorporation

It is possible to include in the simple kriging system an error assigned to hard data.
The reasoning follows the one used in incorporating block measuring error in the
block kriging procedure [8]. Using simple kriging in this way. The P(u) error occur-
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rence is directly estimated together with an error term R(u). The error term follows
the usual conditions for block error in block kriging [8].

2.4 Accuracy Assessment: Direct Sequential Simulation

The referred kriging variants where all used in simulation studies for accuracy as-
sessment integrated in the Direct Sequential Simulation framework [16].

3 Case sudy

The exposed metrologies are now compared with a pratical case study of a thematic
classification procedure executed on satellite image of the portuguese eastern coun-
tryside. Of the total number of classes descrimitaded only four have ground truth
available and of these, three remained with enough information to make a viable
use of the methods under study. The relevant classes are shown with its correspond-
ing ground reference data on figure 1 . Also needed is the total pixel population in
each patch (figure 2) . Also needed in the estimation procedures are the local means
calculated on soft data. That is performed using a small moving window (3x3) is
used in order to reduce the weight of borderline pixels (figure 2) .

3.1 Spatial covariance modelling

Given the scarcity of available data, weighted variograms with approximately half
the range of the study field, few distance lags and large angular tolerances are used.
The resulting anisotropy ellipsoids are modeled using always a spherical variogram
model. In figure 3 the calculated weighted variograms for the main direction are
shown with their corresponding anisotropy correlogram tables used in all algorithms
applied. All the algorithms are scaled to use internally (whenever required) scaling
with Sill values computed in the variogram modeling stage. These are for each class
0.15, 0.30 and 0.15 (from class 1 to 3).

The weighted variogram modeling framework is part of the Poisson kriging
framework.In spite of that fact, there is no reason to not using the variograms mod-
eled in this fashion in the non-Poisson algorithms, hence they are the only ones used
in the present work.
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Fig. 1 Indicator coding of thematic classes derived from satellite images (top) and the correspond-
ing ground reference data. Class 2 is used in all estimation and simulation procedures in the present
work.

3.2 Estimation of class probability fields and stochastic simulation

The estimation of error probabilities yields the results the results presented is only
for class 2. The three used kriging algorithms (all of them using local means derived
from soft data) generally reproduce the same error patterns and very similar prob-
ability values for a given pixel. The notable exception in the present case is (figure
4 ) concerns the lower left corner of the estimated images. The three methods have
a considerable variation in that neighborhood. That happens due to the presence of
a hard data value assigned to a small area. The Poisson and weighted simple krig-
ing algorithms take this data value into account a lot less than the simple kriging
algorithm.

Contrary to the estimation images, the ones of standardized kriging variance
show marked differences between them. The influence of the weighting scheme
used can clearly be noticed. As such, it is expectable that the use of Direct Sequen-
tial Simulation with these methods will show significant differences among them.
When inspecting the results for 40 simulation runs for each of the kriging methods
(figure 5), that is indeed what happens. The methods which take into account the
pixel population associated with hard data clear that influence. Noticing again the
lower left corner, that influence is clearly felt: the values of the mean images for the
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Fig. 2 Left: the values of pixel population for each identified thematic patch are shown. Zero values
correspond to patches where no hard data is available. Right: A moving average of error occurrence
in a 3x3 window is shown. It is used to lower the influence of border pixels in estimation procedures
(presented mean is derived from class 2 ).

Fig. 3 Top: The experimental weighted variograms obtained for the main continuity direction for
each thematic class are shown. Bottom: Correlogram tables showing the anisotropy ellipses for
each class. A spherical variogram model is used.

weighted methods indicate that the error occurrence is higher and simultaneously
the simulated values varied more in this area in spite of the presence of a hard data
point.
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Fig. 4 kriging results and associated standard kriging variances. Simple Kriging (a and d),
Weighted Simple Kriging (b and e) and Poisson kriging with local varying means ( c and f). The
kriging variances of patch size influenced methods show a non zero error on some hard data points.

4 Conclusions and final remarks

The proposed modifications to the kriging algorithms tested in the present work
seem to be achieved to a good degree. The incorporation of patch size influence as an
error source is clearly shown especially when considering the stochastic simulation
results. More testing is however needed, either using synthetic or real data in order
to clearly demonstrate the advantages of the proposed methodologies. The shown
results are however already promising.

Future avenues are being considered as for instance the modification of Sequen-
tial Indicator Simulation in order to update class patch forms and the use of the
weighted variogram modeling applied to multiphasic structures.

Also of note is the software development undertaken for this work. All soft-
ware used was built from scratch and based on Wolfram’s Mathematica 8.0 soft-
ware. The use of a high level language is justified by the speed in which algo-
rithm modifications can be modified continuing that fact a very acceptable trade-off
with lower execution speeds. The software is freely available online at https:
//sites.google.com/site/geostatmathematica/.
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Fig. 5 Results obtained with 40 runs of Direct Sequential Simulation with Simple kriging with
local varying means (SK), error weighted Simple kriging with local varying means (wSK) and
Poisson kriging with local varying means.
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