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Abstract Due to the sparsity of knowledge available, there exists a variety of 

possible geological scenarios to describe a petroleum reservoir. A single scenario 

encapsulates a specific geological concept but is limited to represent the full range 

of geological variability. In order to reflect the geological uncertainty it is 

necessary to integrate a diverse range of these scenarios. Two challenges arise 

from integrating multiple geological scenarios into a prediction model. Firstly, a 

subset of scenarios has to be determined that explain and account for the 

geological variability. Secondly, these geological scenarios are most likely 

heterogeneous, scale dependant and represent a specific spatial region. 

Mathematically these scenarios are complex to integrate. In this paper we apply 

Multiple Kernel Learning to integrate multiple possible scenarios and show how it 

applies feature selection within the multiple inputs.  

Introduction 

Reservoir simulation aims to predict the flow of fluids through a porous media. 

It does this by creating a mathematical model that incorporates both the geological 

model (including the petro physical properties of porosity and permeability) as 

well as the dynamic fluid flow model. Reservoir Simulation is conducted for a 

number of reasons. It is applied when determining the extent and spatial location 

of infill drilling. It is used to predict production rates that are inputs into 
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investment decisions and future planning for the life of a reservoir. Thus it is 

important that models created are realistic and physically possible. Furthermore 

models should encompass the entire realm of realistic models in order to quantify 

the uncertainty surrounding prediction.  

Therefore from the realm of all possible geological models that apply to a 

reservoir, we seek models that are geologically realistic. That is, models that are 

geologically possible and, combined with the dynamic fluid flow model, capture 

the future values of production rate. Geologically realistic models are bounded and 

constrained, predicting outputs such as porosity and permeability within a range 

known to be physically possible. Numerous works have been done on modelling 

geological realism in petroleum reservoirs [1,2]. 

Geologically realistic models however encompass a wide range of possible 

models. Due to the sparsity of accurate information for petro physical properties 

(porosity and permeability) as well as the heterogeneous nature of the reservoir, it 

is possible to derive multiple models that honour the data (generally information 

available from either well logs or well cores). Different modelling techniques will 

further result in different outcomes. It is probable that these multiple models each 

account for unique aspects within the geological model. Thus the true geological 

model is most likely an integration of these models.   

Prediction of the geological model and petro physical properties has 

traditionally been modelled using either Geostatistics [3], Objects Based 

modelling and more recently Multi Point Statistics [4]. These techniques are still 

applied today and are being further enhanced. However, these methodologies have 

two disadvantages. The first, being an inability to integrate multiple possible 

models and secondly the inability to model nonlinear relationships.  

Recent research has focused on addressing these two issues. Kernel learning 

techniques [5] have been developed to model non-linear relationships. Data 

Fusion and Data Assimilation techniques such as Ensemble Kalman Filter [6] and 

Statistical Learning Theory [7,8] have been developed to model environments 

with sparse data yet an abundance of input variables.  

Kernel Learning Methods have been developed to model the non-linear 

relationships by mapping inputs into a higher dimensional space wherein they are 

then linearly related to the output variable. Within a reservoir simulation scenario, 

an abundance of data exists for modelling including downhole logs, output crop 

data and seismic data. These geological scenarios are heterogeneous, scale 

dependant and represent a variety of spatial scales. The relationships between 

these and the petro physical properties of porosity and permeability are non-linear. 

Mapping these inputs into a higher dimension through the use of kernels allows 

one to apply linear regression techniques in this higher dimension. Current 

methodologies employing kernels include Kernel Ensemble Kalman Filters [9], 

Kernel PCA [10] and Machine Learning techniques including Support Vector 

Regression [11], Relevance Vector Machines [12] and Multiple Kernel Learning 

[13].  
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The non-linear relationship between output and input is quite possibly unique 

for each input variable. Support Vector Regression (SVR) applies a single kernel 

to all inputs. Multiple Kernel Learning (MKL) has the advantage in that it applies 

a unique kernel to each input thus enabling the integration of heterogeneous data 

by accounting for unique non-linear relationships.  

Integration of multiple possible models is closely tied to feature selection. 

From a range of multiple models, it is important to determine which models are 

relevant. This is important for both computational efficiency as well as 

interpretability. Models that are highly correlated in some dimension are 

superfluous and add noise to a model. Multiple Kernel Learning applies feature 

selection by constraining the weights of prior model and forcing some to be zero 

by applying Lasso regularization [14].  

In this paper we apply Multiple Kernel Learning to predict permeability and 

porosity by integrating an ensemble of geological scenarios with additional 

available information. This generates a further ensemble of models which more 

accurately represents the true geological model. From this updated ensemble it is 

possible to quantify the uncertainty of the geological model.  

To ensure that the resulting models are realistic the hyper-parameters of the 

MKL model are tuned using stochastic optimization algorithm in the history 

matching framework. This allows one to integrate dynamic production data and 

constrain the ensemble of models to ensure realism. For this paper we have 

applied Flexi Particle Swarm optimization [15] to tune the parameters of the 

model.   

Methodology 

The procedure applied was as follows: We create a model using Multiple 

Kernel Learning that integrates multiple possible models with the spatial location 

of each datum to predict a vector of outputs Y. This model is applied to the grid 

and the resulting geological model is fed through a flow simulator. The simulated 

production results are compared to the true production rates and a goodness of fit 

measure derived. Based on the size of this fit, the hyper-parameters of the MKL 

model are tuned using a stochastic optimization technique known as flexi Particle 

Swarm Optimization. Multiple models are run concurrently until the fit converges 

to a minimum and an ensemble of models is generated. From these models the 

uncertainty can be quantified. 

In this paper the primary focus is on the machine learning algorithm Multiple 

Kernel Learning and its application to predicting the petro physical properties of a 

petroleum reservoir from prior geological models. A brief overview of MKL is 

given below, followed by a case study.   

Multiple Kernel Learning is a predictive technique falling within the realm of 

Machine Learning and more specifically Statistical Learning Theory. It was 
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developed in 2004 by Lanckriet and Bach [13] as an extension of Support Vector 

Regression.  

In contrast to Support Vector Regression, MKL applies a unique kernel to each 

input scenario / variable (eq()). Hence for observation i, a unique kernel is 

determine for each variable      . This accounts for the heterogeneous nature 

of scenarios and input variables. Each kernel is then weighted and the weights 

constrained to sum to one. This is the lasso regularization [] and forces some of 

the features to have a weight of zero, thereby inducing sparsity in the number of 

relevant features. An additional advantage of MKL is thus the interpretability of 

the model. The exact impact of each input is determined from the weighting.  
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Support Vector Regression and Multiple Kernel Learning have been applied 

successfully in reservoir simulation [16,17,18].  

Multiple Kernel Learning (MKL) maps scenarios and input variables into a 

higher dimension through the use of kernels. In this dimension a linear 

relationship exists between predictor and input variables and linear regression can 

be applied. However, in order to account for sparsity of data and thus ensure 

generalization MKL modifies the linear regression approach.   

Multiple Kernel Learning (MKL) ensures generalization of the model in two 

ways. Firstly by fitting a soft margin   around the prediction line. That is, MKL 

honours the data to within a predefined margin. The width of the margin is a 

hyper-parameter that is tuned during the history matching process. Secondly MKL 

adds a regularization term, minimizing the sum of the weights squared (the 

  norm) of each input. A complexity factor   controls the balance between the 

regularization term and minimizing the fit between data and model. This 

complexity factor is a hyper-parameter of MKL and is tuned during the history 

matching procedure.  

Hence MKL has at least three hyper-parameters that require tuning via history 

matching. The width of the soft margin  , the complexity factor   and the 

parameters of each kernel that are unique to individual inputs and scenarios.  

The function derived by Multiple Kernel Learning is given by equation (2).  
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The results of MKL are interpretable in that a weighting is given for each 

feature as well as for each observation. In eq (2), the    represent the weight given 

to each well. The observations that are used in the model are known as support 

vectors. Their weight is bounded by the value of the complexity function which 

avoids large variations occurring in complex models. The advantages of weighting 

the observations, in reservoir simulation, is the ability to determine which wells 

are influential and represent areas of spatial diversity where additional drilling 

may be required.  

 

Case Study  

We apply this methodology to the Brugge Case Study that was developed by TNO 

in the Netherlands. The Brugge Case study is a synthetic oil reservoir based on a 

North Sea reservoir. It is a complex reservoir comprising 4 depositional 

environments. The case study is supplied with 104 possible geological models. 

The true geological model is not supplied and part of the exercise is to create a 

geological model that integrates these multiple possible models in order to 

enhance the prediction of production rates in the future.  

Thus the case study is an ideal situation to apply Multiple Kernel Learning. The 

104 prior models are integrated with additional information and an ensemble of 

models generated.  

 

Discussion  

In this paper we aim to show how Multiple Kernel Learning (MKL) can be 

applied in the prediction of petro physical properties (porosity and permeability).  

MKL has the ability to integrate multiple possible geological scenarios. Prior 

models may well represent a specific spatial region be or scale. An integration of 

these models results in a model that better captures the future fluid production 

rate. 

MKL has the ability to select relevant scenarios / models from an ensemble of 

possible geological models. MKL selects features which are unique and represent 

spatially independent areas.  
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MKL provides interpretable results through the use of weighting. The relevant 

features are weighted between zero and one allowing one to determine the impact 

of each feature relative to the other features. Furthermore, MKL provides a 

weighting for each well indicating which wells are unique and contribute the most 

towards the modelling of the properties.  

Using a history matching approach we ensure that the MKL models are 

realistic. This is done by tuning the hyper-parameters of the MKL model with a 

stochastic optimization technique that minimizes the fit between simulated and 

true production data.  

Uncertainty within the MKL model is due to the selection of input scenarios 

and variables available as well as the range of each hyper-parameter. These hyper-

parameters include the parameters for individually unique kernels, the complexity 

factor that balances the complexity of the model and the width of the soft margin 

which ensures over-fitting of the data does not occur.  
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