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Abstract The discrete Gaussian model is a very popular change-of-support model. 
It is designed for a stationary random function Z(x) that is regarded as the 
transform of a stationary random function Y(x) with Gaussian marginal. It is based 
on an assumption that is not fully true and thus constitutes an approximation to the 
exact solution. We examine the effect of this approximation on the modeling of 
the marginal distribution of block values of a lognormal random function. The 
initial discrete Gaussian model and a variant of that model are considered. 

Introduction 

In many situations decision makers are faced with selectivity: extract ore above 
some cutoff grade, remediate soils whose pollution exceeds some threshold, 
restrict traffic speed when the ozone concentration is exceeds some limiting value. 
In each case, data relate to a small support (e.g., a core) that we regard as a point, 
whereas the decision is taken for a much larger support: selective mining units, 
decontamination units, average concentration in a city in a given time interval 
(typically with a low threshold applied to the daily average concentration and a 
higher threshold for an hourly average concentration). To predict the effect of 
selectivity it is necessary to take into account that the grade or concentration 
distribution is all the less dispersed as the support is large. In the framework of the 
random function theory the result depends on the whole spatial distribution. It can 
be obtained by Monte Carlo simulations (nonconditional simulations in the global 
case, conditional simulations in the local case). Even if Monte Carlo simulations 
are more accessible now than in the past, there are always situations where they 
require too intensive computations. It is therefore useful to have access to the 
approximate solutions provided by change-of-support models. Many such models 
have been developed by Georges Matheron (a synthesis is given in chapter 6 of 
[1]). The most popular model is the discrete Gaussian model. It should not be used 
in any situation because it has been developed for random functions such as 
transforms of stationary Gaussian random functions. The initial model was 
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proposed in 1976 by Matheron [5]. A simpler variant was proposed in 2007 by 
Emery [3]. We investigate here the accuracy of this change-of-support model for 
the modeling of the marginal distribution of block values. This investigation is 
carried out in the special case of lognormal random functions, which constitutes a 
large and important class of random functions. 

We first recall the assumptions of the discrete Gaussian model and its variant, 
and explain why they lead to approximations to the true solution. We then 
describe the principle of the validation method. Finally we explore the validity 
range of the model and its variant depending on space dimension, variance and 
covariance function of the logarithmic variable, and support size. In the 
conclusion we give some indications concerning the modeling of the local block 
distribution. 

The Discrete Gaussian Model 

Let us consider a stationary random function (SRF) Z(x) that can be expressed as 
the transform of an SRF Y(x) with standard normal marginal distribution. It is 
therefore of the form Z(x) = ϕ(Y(x)) with the transformation function 1F G−ϕ = � , 

where F is the marginal c.d.f. of Z(·) and G the standard normal c.d.f. Similarly, 
we can consider that the mean grade Z(v) of the block v is of the form 
Z(v) = ϕv(Yv) where Yv is a standard normal random variable and ϕv the block 

transformation function which we want to determine (we assume strict stationarity 
of Y to ensure that ϕv does not depend on the location of the block). 

Model DGM1 

Consider a uniform random point x  within the block v. The random variable 
( )Z x  has for c.d.f. the marginal distribution F of the SRF Z(·) and can be 

expressed as the transform ( ( ))Y xϕ  of the random variable ( )Y x .The basic 

assumption of the discrete Gaussian model proposed by Matheron [5], hereafter 
referenced as model DGM1, is that the bivariate distribution of the ( ( ), )vY x Y  pair 

is Gaussian, with a positive correlation coefficient r. Matheron deduces from 
Cartier's relation that the block transformation function ϕv is given by 

 2( ) ( 1 ) ( )v v vy r y r u g u duϕ = ϕ + −∫  (1) 

This defines the distribution of Z(v). 



3 

 
In practice ϕ is expressed through its Hermite polynomial expansion 
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( ) ( )n n
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y y
∞

=
ϕ = ϕ χ∑  (2) 

where the χn's are the normalized Hermite polynomials (see, e.g., [1], Appendix 

A.5) and the coefficients ϕn are given by 

 ( ) ( ) ( )n ny y G dyϕ = ϕ χ∫  (3) 

Relation (1) then implies that ϕv can be expressed in the form 
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The variance of Z(v) can be derived from the coefficients ϕn r n of the 

expansion of ϕv or from the covariance C(h) of the SRF Z. For consistency, r is 

obtained by equating these two expressions, that is 

 2 2
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∞
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ϕ = −∑ ∫ ∫  (5) 

Considered as an equation in r, (5) has a unique solution between 0 and 1. The 
correlation coefficient r is called the change-of-support coefficient. 

Extensions of the model (not considered here) enable the local estimation of a 
block by disjunctive kriging or in a multivariate Gaussian framework. 

Model DGM2 

The variant DGM2 proposed by Emery [3] is simpler but requires the additional 
assumption that the bivariate distribution of ( )Y x  and ( ')Y x  for two independent 

random points within the same block v is Gaussian. In that case, Emery shows that 
r2 is the variance of the average Y(v) of Y(·) in the block v: 

 2
2

1
( ' ) '

v v

r x x dx dx
v

= ρ −∫ ∫  (6) 
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where ρ(h) is the covariance (here a correlogram) of the SRF Y(·). Moreover, Yv is 
simply the average Y(v) rescaled to a unit variance by the change-of-support 
coefficient r: 

 Yv = Y(v) / r (7) 

This induces large simplifications in the extensions of the model to local 
estimation, notably in the framework of a multivariate Gaussian assumption. 

Discussion of the Assumptions 

Does there exist random functions satisfying the above assumptions? It is easy to 
simulate Gaussian samples with pairwise correlation r, thus corresponding to 
samples of Y with independent random locations in the block v (see [3]). But the 
author does not know of a random function model for fixed locations leading to 
such correlations for random locations in v. Would such a model exist, it would be 
specific to that support v. The above assumptions should therefore be considered 
as approximate only. 

Let us first consider the situation where Z is a Gaussian SRF, that is, ϕ amounts 
to an affine transformation (in that case we have no need of the discrete Gaussian 
model but is interesting to see what it would mean). Models DGM1 and DGM2 
give the same value for r because C(h) is proportional to ρ(h), and relation (7) is 
exact. Since x  is random in v, the bivariate distribution of ( )Y x  and Yv is a 

mixture of standard bivariate normal distributions with correlations 

 
1

( ) ( ' ) '
v

x x x dx
r v

ω = ρ −∫  (8) 

for x having any possible location in v. The average value of ω(x) when x scans v 
is r, so that the average correlation between Y(x) and Yv is r but, depending on r, it 

can be an average of very different values. A mixture of such bivariate Gaussian 
distributions is not a bivariate Gaussian distribution: it is a Hermitian bivariate 
distribution ([4]; see also [1], pp. 418 and 423). In the one-dimensional case, that 
is, when v is a segment of length L, and for an exponential covariance with unit 
sill and with scale parameter a, the change-of-support coefficient r and the 
function ω(x) are respectively given by 
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ω(x) is minimal at the extremes (x = 0 or L) and maximum for x = L / 2. The 
contrast between the largest correlation and the smallest one is 

 ( )1

2

( / 2) 2

(0) 1 exp /

L

L a

ω =
ω + −

  

This ratio is equal to 1 for L / a = 0, remains close to 1 when L / a remains 
moderate (with a value of about 1.245 for L / a = 1) and increases to 2 when L / a 
increases to infinity. Figure 1 shows the graph of ω (x) for some values of L / a. 
The approximation of a constant correlation ω (x) thus seems to be acceptable 
when L / a is not too large. 
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Figure 1 Graph of the correlation ω(x) of Y(x) and Yv = Y(v) / r for several values of L / a 
(Y: Gaussian SRF; v: segment with length L; a: exponential-covariance scale parameter). 

The situation is more critical for the bivariate distribution of ( )Y x  and ( ')Y x  

because it is a mixture of standard bivariate Gaussian distributions with 
correlations ρ(x' – x), thus ranging from 1 when x = x' to ρ(L) when x and x' are at 
opposite corners of the block v and L denotes their separation vector (we assume 
here isotropy). In the above one-dimensional case, L is the length of the segment 
and this minimum correlation is equal to exp(–L / a): it can be very small if L is 
large with respect to a. 
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When Z is not Gaussian, the transformation function ϕ is not linear. The 

variogram of Z is therefore not proportional to the variogram of Y. Notice that the 
change-of-support coefficient of model DGM2 depends only on the variogram of 
Y and does not depend on the transformation ϕ. This is not the case for model 
DGM1, because the covariance C of Z depends also on the transformation ϕ: 

 2

1

( ) ( )n
n

n

C h h
∞

=

= ϕ ρ∑   

The correlograms ρ(h)n are less and less structured when n increases. For 
example, if ρ(h) is an exponential covariance with scale parameter a, ρ(h)n 
remains exponential, but with scale parameter a / n, and therefore tends to a pure 
nugget effect when n tends to infinity. As a consequence, the change-of-support 
coefficient r of model DGM1 is larger than that of model DGM2, with a 
difference that increases as the block v is large and the terms ϕn with large n 
dominate in the development of the transformation function ϕ. The efficiency of 
model DGM2 will be similar to that of model DGM1 when the block size is small 
and the ϕn's decrease rapidly with n. 

Note that the change-of-support coefficient r cannot simultaneously satisfy 
relations (5) and (6) (except if Z is bivariate Gaussian). Unlike model DGM1, 
model DGM2 therefore does not preserve the variance of Z(v) expressed in the 
right-hand side of relation (5), which is an important parameter of the block 
distribution. This may be critical if the ratio r1/r2 of the coefficients r provided by 
models DGM1 and DGM2 is significantly larger than 1. 

Validation of the Discrete Gaussian Model 

We will check the validity of the assumptions of the discrete Gaussian models for 
modeling the marginal block distribution. This corresponds to the so-called global 
change-of-support, by contrast with the local change-of-support which consists in 
predicting the distribution of block values conditional on data available in the 
block and its neighborhood. 

The result depends on the spatial distribution of the random function Z and we 
consider the ideal situation where this spatial distribution is known. In practice, we 
will consider the case where Z is a lognormal SRF (that is, its logarithm is a 
Gaussian SRF). We can assume without lack of generality that it has a unit mean. 
It is then characterized by its logarithmic standard deviation σ and by the 
correlogram ρ(h) of its logarithm. The random function Z(x) is thus of the form 

 
2

( ) exp ( )
2

Z x Y x
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It can also be expressed as 
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which corresponds to a development of the transformation function ϕ with 
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n
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The ϕn's decrease rapidly when n increases if σ is small, but not so much if σ > 1. 
For σ = 3, for example, ϕn increases up to n = 8 and then decreases slowly. The 
logarithmic assumption thus includes very contrasted behaviors. This can also be 
seen on the variance of Z: it is given by 

 
22 1eσΣ = −  

Since Z(x) has unit mean, its coefficient of variation is close to σ when σ is small 
(0.53 for σ = 0.5) but takes large values when σ is large: 1.31 for σ = 1, 7.32 for 
σ = 2, 90.01 for σ = 3. Such large a logarithmic standard deviation as 3 has been 
sometimes reported for permeability in hydrogeology [7] but the main variable in 
that case is log-permeability rather than permeability. When dealing with ore 
grade or pollution concentration, we are of course interested in Z(x) itself rather 
than its logarithm, and such a logarithmic standard deviation would be extreme. 
Would it correspond to an actual situation, we would be in a very uncomfortable 
situation because a simple parameter such as the arithmetic mean of Z would 
require a large number of observations to be estimated safely. Of course it is 
possible to deduce it from the mean and the variance of log Z but then we rely 
heavily on the assumption of a lognormal distribution, which cannot be taken for 
granted. 

A specificity of lognormal SRFs is that DGM models lead to a lognormal 
distribution for Z(v), with logarithmic variance r2 σ2: This is the well-known 
permanence of lognormality. It can be shown easily by application of (1) or (4). 
Another specificity is that the correspondence between the covariance C(h) of Z 
and the correlogram ρ(h) of Y takes the simple form 

 ( )2( ) exp ( ) 1C h h= σ ρ − ,  

which facilitates the computation of the right-hand side of equation (5). 
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Validation Method 

Several authors already checked the validity of model DGM1 or DGM2 in the 
lognormal case [1, 2, 3, 6]. The principle is to compare the block transformation 
function given by the DGM model with the "exact" block transformation function 
obtained with a large number of simulations. 

Matheron [6] conducted a first exercise in 1981. With the computation 
capabilities available at that time, this check was limited to the one-dimensional 
case with an exponential covariance (the random function is then a Markov 
random process), and used a limited number of simulations. We extend it to 2D 
and 3D, with a finer discretization of the block, and a much larger number of 
simulations, enabling relatively large values for σ to be considered. The principle 
of the checking is as follows: 

− Consider a block v of the d-dimensional space, defined as the union of M 
discrete points forming a regular grid. 

− Build N unconditional simulations Yk(x): k = 1, …, N, of a point-support 
stationary Gaussian random function Y(x) with zero mean, unit variance, 
and covariance ρ(h). 

− Build the corresponding simulations ( )2( ) exp ( ) / 2k kZ x Y x= σ − σ . 

− Calculate the simulated block values Zk(v), namely the average values of 
Zk(x) among all x defining the block v. 

− Sort the Zk(v) by increasing values; let Wk(v) denote the sorted series. 
− Use (Wk(v) + Wk+1(v)) / 2 as the k / N th quantile of the distribution of Z(v), 

that is as the value of ϕv(y) for y = G–1(k / N). 
− Compare to the values predicted by models DGM1 and DGM2, that is to 

exp(r σ y – r2 σ2
 / 2) with the corresponding change-of-support coefficient r. 

Note that we do not consider the average value at N grid nodes as an 

approximation to the average in a block v of Rd: We substitute the problem in the 

discrete space to the problem in the continuous case, so that there is no 
approximation in the approach. The simulations are generated with the discrete 
spectral method, which produces perfectly Gaussian simulations (up to the quality 
of the pseudo-random number generator). Would it not be possible to exactly 
reproduce the desired covariance for Y, we would replace it by a covariance as 
close as possible to it and check this model. For consistency, the integrals in (5) 
and (6) are replaced by discrete sums. We use a large number of simulations (up to 
100,000). 

Note that this approach, fully similar to that of Matheron [6], is slightly 
different from that used by Emery [3] to check model DGM2. Indeed Emery 
simulated standard Gaussian values with pairwise correlations all equal to r, thus 
corresponding to the values of Y at independent random points in v. 
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Results 

We focus on a spherical correlogram for Y, and on three contrasted block sizes L 
with respect to the range a of the correlogram: L / a = 0.1, 1, and 10. 

When L / a = 0.1, the change-of-support coefficient r2 of model DGM2 is close 
to 1 (0.980 in 1D, 0.951 in 2D, 0.933 in 3D) and the coefficient r1 of model 
DGM1 remains very close to r2 even for a large σ value (for σ = 3 we obtain 
0.981 in 1D, 0.955 in 2D, 0.938 in 3D). Both models lead to similar block 
distributions, very close to the true one (see [1] p. 454 for the 2D case with 
σ = 1.5). 

When L / a = 1, the coefficient r2 is equal to 0.79 in 1D, 0.59 in 2D, and only 
0.46 in 3D. Moreover, r1 increases significantly with σ when σ exceeds 1, as can 
be seen in Figure 2. 
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Figure 2 Graphs of the change-of-support coefficient of model DGM1 for L / a = 1 as a 
function of the logarithmic standard deviation σ, in the 1D, 2D and 3D cases. The value at 
the origin coincides with the change-of-support coefficient of model DGM2, which does 
not vary with σ. 

Figures 3 and 4 show the results obtained with 100,000 simulations for σ = 1 and 
2 respectively. Model DGM1 quite perfectly reproduces the true transformation 
function—and thus the block distribution. Model DGM2 gives good results as far 
as large values are not considered but comes with a slight bias for y > 2 when 
σ = 1, and a significant bias when σ = 2. 

 



10 

 

Trueϕv

DGM1
DGM2

Trueϕv

DGM1
DGM2

0

1

2

3

4

5

ϕv

-3 -2 -1 0 1 2 3 y
0

1

2

3

4

5

ϕv

-3 -2 -1 0 1 2 3 y  

Figure 3 Validity of the DGM approach for a 2D block with size L equal to range a and a 
logarithmic standard deviation σ = 1: "True" block transformation function ϕv (determined 
from 100,000 simulations) and approximations provided by models DGM1 and DGM2. 
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Figure 4 Validity of the DGM approach for a 2D block with size L equal to range a and a 
logarithmic standard deviation σ = 2: "True" block transformation function ϕv (determined 
from 100,000 simulations) and approximations provided by models DGM1 and DGM2. 

When L / a = 10, the coefficient r2 is equal to 0.271 in 1D, 0.077 in 2D, and 
only 0.022 in 3D, and like in the preceding case r1 can have much larger values 
when σ exceeds 1. Model DGM1 presents a slight bias at the extremes of the 
distribution, whereas DGM2 is biased everywhere but close to the median (see [1] 
p. 454 in the 2D case with σ = 1.5). 
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Conclusion 

This validation exercise shows that the original DGM1 model of Matheron [5] 
gives a very good approximation to the true block distribution, except for extreme 
values when the logarithmic standard deviation is very large. The variant DGM2 
of Emery [3] is also a very good approximation to the true distribution provided 
that we are in one of the following situations: (i) the block size is small with 
respect to the range or (ii) the logarithmic standard deviation is not too large or 
(iii) we are not interested in the distribution of high grades. In such a case, this 
variant can be applied safely. 

Further checks are in progress. The approximation of the DGM models has to 
be quantified also in 1D and in 3D (the approximation is all the less valid as the 
space dimension increases). It is also interesting to examine other covariance 
models for ρ(h): When σ is fixed, the solution provided by DGM models depends 
only on r but two covariance models that would give the same r value do not 
necessarily give the same true block distribution. Finally, the presence of a nugget 
effect extends the validity of DGM models but this has to be quantified. 

We only addressed the global change of support problem. The local change of 
support (prediction of the block distribution conditional on neighboring data) has 
been examined in [2]: Cressie considers unbiased lognormal estimators that are 
exponentials of the simple or ordinary kriging estimators of Y(v), which amounts 
to the assumptions of model DGM2. The experiment compares this ordinary 
lognormal kriging with the optimal solution provided by conditional expectation, 
obtained by a Monte Carlo method. The results indicate that ordinary lognormal 
kriging performs well in situations where the block size is small with respect to 
the range, the lognormal standard deviation is not too large, and the neighborhood 
is sparse. The first two conditions are required for the global model to be efficient. 
The third one expresses that conditional expectation makes better use of numerous 
data than an estimator whose form is limited to the exponential of a linear 
combination of the logarithms of the data. 
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