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Abstract The discrete Gaussian model is a very popularggafisupport model.
It is designed for a stationary random functig¢x) that is regarded as the
transform of a stationary random functigfx) with Gaussian marginal. It is based
on an assumption that is not fully true and thusstitutes an approximation to the
exact solution. We examine the effect of this agpnation on the modeling of
the marginal distribution of block values of a logmal random function. The
initial discrete Gaussian model and a variant af thodel are considered.

I ntroduction

In many situations decision makers are faced wafbctivity: extract ore above
some cutoff grade, remediate soils whose polluttoiceeds some threshold,
restrict traffic speed when the ozone concentra@xceeds some limiting value.
In each case, data relate to a small support @apre) that we regard as a point,
whereas the decision is taken for a much largepatpselective mining units,
decontamination units, average concentration intyain a given time interval
(typically with a low threshold applied to the dadverage concentration and a
higher threshold for an hourly average concentnatido predict the effect of
selectivity it is necessary to take into accourdttthe grade or concentration
distribution is all the less dispersed as the stgpdarge. In the framework of the
random function theory the result depends on thelevlpatial distribution. It can
be obtained by Monte Carlo simulations (honcondaicsimulations in the global
case, conditional simulations in the local cas&grEif Monte Carlo simulations
are more accessible now than in the past, theralai@ys situations where they
require too intensive computations. It is therefaseful to have access to the
approximate solutions provided by change-of-suppwtlels. Many such models
have been developed by Georges Matheron (a systtgegiven in chapter 6 of
[1]). The most popular model is the discrete Gamssnodel. It should not be used
in any situation because it has been developeddndom functions such as
transforms of stationary Gaussian random functiofise initial model was
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proposed in 1976 by Matheron [5]. A simpler variards proposed in 2007 by
Emery [3]. We investigate here the accuracy of thiange-of-support model for
the modeling of the marginal distribution of bloeklues. This investigation is
carried out in the special case of lognormal randi@metions, which constitutes a
large and important class of random functions.

We first recall the assumptions of the discrete <& model and its variant,
and explain why they lead to approximations to thee solution. We then
describe the principle of the validation methodhdlly we explore the validity
range of the model and its variant depending orcesghmension, variance and
covariance function of the logarithmic variable,dassupport size. In the
conclusion we give some indications concerningrtizeleling of the local block
distribution.

The Discrete Gaussian M odel

Let us consider a stationary random function (SR¥) that can be expressed as
the transform of an SRK¥(x) with standard normal marginal distribution. It is
therefore of the fornz(x) = ¢(Y(X)) with the transformation functiop = F "G,

whereF is the marginal c.d.f. aZ(*) andG the standard normal c.d.f. Similarly,
we can consider that the mean grade) of the blockv is of the form
Z(v) = ¢,(Y,) whereY, is a standard normal random variable gndthe block

transformation function which we want to determfne assume strict stationarity
of Y to ensure thap,, does not depend on the location of the block).

Model DGM1

Consider a uniform random poimt within the blockv. The random variable
Z(x) has for c.d.f. the marginal distributidh of the SRFZ(*) and can be

expressed as the transforg(Y(X)) of the random variableY(x).The basic

assumption of the discrete Gaussian model propbgedatheron [5], hereafter
referenced as model DGML1, is that the bivariat&ritigion of the (Y(X),Y,) pair

is Gaussian, with a positive correlation coeffitien Matheron deduces from
Cartier's relation that the block transformationdtion¢,, is given by

6.(%,) = [o(ry, +¥1-r*u)g(u)du (1)

This defines the distribution @(v).



In practiced is expressed through its Hermite polynomial exjmans
oY) =2 00 X (Y) )
n=0

where thex,'s are the normalized Hermite polynomials (see.,, ¢1g, Appendix
A.5) and the coefficient$, are given by

0, = [0(y) X,(¥) G(ay) (3)

Relation (1) then implies that, can be expressed in the form

0,(9)= 30,7 X,(¥) @

The variance ofZ(v) can be derived from the coefficients,r" of the
expansion ofp,, or from the covarianc€(h) of the SRFZ. For consistency; is
obtained by equating these two expressions, that is

iq)ﬁrZ":MiZJ'I C(x'- x) dxdx’ (5)

Considered as an equationrin(5) has a unique solution between 0 and 1. The
correlation coefficient is called the change-of-support coefficient.

Extensions of the model (not considered here) endtd local estimation of a
block by disjunctive kriging or in a multivariatea@ssian framework.

Model DGM2

The variant DGM2 proposed by Emery [3] is simplekt bequires the additional
assumption that the bivariate distribution¥ofx) and Y(x') for two independent

random points within the same bloeks Gaussian. In that case, Emery shows that
r?is the variance of the averay@) of Y(*) in the blockv:

r :%J‘ J p(x'- x) dxdx' (6)
|V| ve v



wherep(h) is the covariance (here a correlogram) of the SR MoreoverY, is
simply the averageY(v) rescaled to a unit variance by the change-of-supp
coefficientr:

Yy=Y(V) /r (7

This induces large simplifications in the extensiasf the model to local
estimation, notably in the framework of a multivde Gaussian assumption.

Discussion of the Assumptions

Does there exist random functions satisfying thevabassumptions? It is easy to
simulate Gaussian samples with pairwise correlatiothus corresponding to
samples ofY with independent random locations in the bledsee [3]). But the
author does not know of a random function modelfiieed locations leading to
such correlations for random locations/inVould such a model exist, it would be
specific to that suppost. The above assumptions should therefore be caeside
as approximate only.

Let us first consider the situation whetés a Gaussian SRF, that ¢samounts
to an affine transformation (in that case we havex@ed of the discrete Gaussian
model but is interesting to see what it would meatydels DGM1 and DGM2
give the same value forbecauseC(h) is proportional tgp(h), and relation (7) is
exact. Sincex is random inv, the bivariate distribution off(x) andy, is a

mixture of standard bivariate normal distributiavigh correlations

o) =— | pix-x)dx’ ®)

rviJy

for x having any possible location in The average value of(x) whenx scans/
isr, so that the average correlation betw¥gq) andY,, isr but, depending on it

can be an average of very different values. A m&tf such bivariate Gaussian
distributions is not a bivariate Gaussian distiifsurt it is a Hermitian bivariate
distribution ([4]; see also [1], pp. 418 and 428)the one-dimensional case, that
is, whenv is a segment of length, and for an exponential covariance with unit
sill and with scale parametea, the change-of-support coefficientand the
functionw(x) are respectively given by

2a® L L
r’=—/exp —— |- 1+—
L2 [ p[ aj a}



w(X) is minimal at the extremexx£ 0 orL) and maximum forx=L/2. The
contrast between the largest correlation and tredlsst one is

W(L/2) _ 2
w0  1+exp(-5L /a)

This ratio is equal to 1 fot./a=0, remains close to 1 whdn/a remains
moderate (with a value of about 1.245 Edora = 1) and increases to 2 whernha
increases to infinity. Figure 1 shows the graphugk) for some values of/a.
The approximation of a constant correlatianx) thus seems to be acceptable
whenL/ais not too large.
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Figure 1 Graph of the correlatiom(x) of Y(x) andY, =Y(v) /r for several values df / a
(Y: Gaussian SRR segment with length; a: exponential-covariance scale parameter).

The situation is more critical for the bivariatestdibution of Y(x) and Y(x")

because it is a mixture of standard bivariate Qdansglistributions with
correlationgp(x' —x), thus ranging from 1 whex= X' to p(L) whenx andx' are at
opposite corners of the bloekandL denotes their separation vector (we assume
here isotropy). In the above one-dimensional chads,the length of the segment
and this minimum correlation is equal to eXp{-a): it can be very small iL is
large with respect ta.



When Z is not Gaussian, the transformation functipnis not linear. The
variogram ofZ is therefore not proportional to the variogramYofNotice that the
change-of-support coefficient of model DGM2 depeadky on the variogram of
Y and does not depend on the transformadiohis is not the case for model
DGML1, because the covarianCeof Z depends also on the transformatfon

C(h) = 3 0% p(hy’

The correlogramsp(h)" are less and less structured wherincreases. For
example, ifp(h) is an exponential covariance with scale paramatep(h)”
remains exponential, but with scale paramatén, and therefore tends to a pure
nugget effect whem tends to infinity. As a consequence, the changsdpport
coefficient r of model DGML1 is larger than that of model DGM2jthwa
difference that increases as the blacks large and the termg, with largen
dominate in the development of the transformatiamcfion$. The efficiency of
model DGM2 will be similar to that of model DGM1 e the block size is small
and thep,'s decrease rapidly with

Note that the change-of-support coefficientannot simultaneously satisfy
relations (5) and (6) (except # is bivariate Gaussian). Unlike model DGM1,
model DGM2 therefore does not preserve the variaric&v) expressed in the
right-hand side of relation (5), which is an im@ottt parameter of the block
distribution. This may be critical if the ratig/r, of the coefficients provided by
models DGM1 and DGM2 is significantly larger than 1

Validation of the Discrete Gaussian M odel

We will check the validity of the assumptions oé ttliscrete Gaussian models for
modeling the marginal block distribution. This @sponds to the so-called global
change-of-support, by contrast with the local cleaafysupport which consists in
predicting the distribution of block values condiital on data available in the
block and its neighborhood.

The result depends on the spatial distributiorhefrandom functio@ and we
consider the ideal situation where this spatiatithistion is known. In practice, we
will consider the case wher2 is a lognormal SRF (that is, its logarithm is a
Gaussian SRF). We can assume without lack of gktyettzat it has a unit mean.
It is then characterized by its logarithmic stawdateviation o and by the
correlogranp(h) of its logarithm. The random functi&{x) is thus of the form

Z(x)= exp[oY (x)—o—zz)



It can also be expressed as

O.n

Jn!

which corresponds to a development of the transition functiond with

209 = 3 (-1 =X, (Y()

The ¢,'s decrease rapidly whenincreases i& is small, but not so muchdf > 1.
For o = 3, for exampleg, increases up ta =8 and then decreases slowly. The
logarithmic assumption thus includes very contigtehaviors. This can also be
seen on the variance &f it is given by

s2=¢” -1

SinceZ(x) has unit mean, its coefficient of variation iss# too wheno is small
(0.53 foro = 0.5) but takes large values whens large: 1.31 foo =1, 7.32 for
o0 =2, 90.01 foro = 3. Such large a logarithmic standard deviatisrBdas been
sometimes reported for permeability in hydrogeolfgybut the main variable in
that case is log-permeability rather than permégbiWhen dealing with ore
grade or pollution concentration, we are of counderested inZ(x) itself rather
than its logarithm, and such a logarithmic standdediation would be extreme.
Would it correspond to an actual situation, we wlooé in a very uncomfortable
situation because a simple parameter such as ithenatic mean ofZ would
require a large number of observations to be estishaafely. Of course it is
possible to deduce it from the mean and the vagiafdogZ but then we rely
heavily on the assumption of a lognormal distribatiwhich cannot be taken for
granted.

A specificity of lognormal SRFs is that DGM moddéad to a lognormal
distribution for Z(v), with logarithmic variance? 6% This is the well-known
permanence of lognormality. It can be shown edsylyapplication of (1) or (4).
Another specificity is that the correspondence ketwthe covarianc€(h) of Z
and the correlogram(h) of Y takes the simple form

C(h) =exp(o”ph)) -1,

which facilitates the computation of the right-haside of equation (5).



Validation Method

Several authors already checked the validity of ehddGM1 or DGM2 in the
lognormal case [1, 2, 3, 6]. The principle is tanpare the block transformation
function given by the DGM model with the "exactbbk transformation function
obtained with a large number of simulations.

Matheron [6] conducted a first exercise in 1981.tHWihe computation
capabilities available at that time, this check Wwasted to the one-dimensional
case with an exponential covariance (the randonctifom is then a Markov
random process), and used a limited number of sitiomls. We extend it to 2D
and 3D, with a finer discretization of the blockydaa much larger number of
simulations, enabling relatively large values @to be considered. The principle
of the checking is as follows:

— Consider a block of thed-dimensional space, defined as the uniomMof
discrete points forming a regular grid.

— Build N unconditional simulation¥(x): k=1, ..., N, of a point-support
stationary Gaussian random functi¥(x) with zero mean, unit variance,
and covariance(h).

- Build the corresponding simulatiors, (x) = exp(oYI< x)-o? /2) .

— Calculate the simulated block valuggv), namely the average values of
Z(x) among allx defining the block.

— Sort thez(v) by increasing values; 1&Y(v) denote the sorted series.

= Use Wi(Vv) + Wi1(V)) / 2 as thek / N th quantile of the distribution af(v),
that is as the value gf(y) fory = G(k / N).

— Compare to the values predicted by models DGM1R@&#12, that is to
exp( oy —r? a®/2) with the corresponding change-of-support coieffitr.

Note that we do not consider the average valueN ajrid nodes as an
approximation to the average in a blockf R® We substitute the problem in the

discrete space to the problem in the continuouse,cas that there is no
approximation in the approach. The simulations gererated with the discrete
spectral method, which produces perfectly Gaussiimnlations (up to the quality
of the pseudo-random number generator). Would it b® possible to exactly
reproduce the desired covariance Yorwe would replace it by a covariance as
close as possible to it and check this model. Basistency, the integrals in (5)
and (6) are replaced by discrete sums. We usge tarmber of simulations (up to
100,000).

Note that this approach, fully similar to that ofatMeron [6], is slightly
different from that used by Emery [3] to check mio@&M2. Indeed Emery
simulated standard Gaussian values with pairwiseeladions all equal to, thus
corresponding to the values6ht independent random pointsvin



Results

We focus on a spherical correlogram frand on three contrasted block sites
with respect to the rangeof the correlogranl. /a=0.1, 1, and 10.

WhenL /a = 0.1, the change-of-support coefficienof model DGM2 is close
to 1 (0.980 in 1D, 0.951 in 2D, 0.933 in 3D) ane ttoefficientr; of model
DGM1 remains very close to, even for a larges value (foroc =3 we obtain
0.981 in 1D, 0.955 in 2D, 0.938 in 3D). Both mod&ad to similar block
distributions, very close to the true one (see §1h54 for the 2D case with
o=1.5).

WhenL /a=1, the coefficient, is equal to 0.79 in 1D, 0.59 in 2D, and only
0.46 in 3D. Moreover; increases significantly with whenc exceeds 1, as can
be seen in Figure 2.
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Figure 2 Graphs of the change-of-support coefficient of elddGM1 forL/a=1 as a
function of the logarithmic standard deviationin the 1D, 2D and 3D cases. The value at
the origin coincides with the change-of-supportfficient of model DGM2, which does

not vary withga.

Figures 3 and 4 show the results obtained with@@®Dsimulations foo = 1 and

2 respectively. Model DGM1 quite perfectly reprodsicdhe true transformation
function—and thus the block distribution. Model D@Mives good results as far
as large values are not considered but comes wglight bias fory > 2 when
o = 1, and a significant bias wherr 2.
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Figure 3 Validity of the DGM approach for a 2D block wities L equal to ranga and a
logarithmic standard deviatiom= 1: "True" block transformation functiap, (determined
from 100,000 simulations) and approximations preditty models DGM1 and DGM?2.
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Figure 4 Validity of the DGM approach for a 2D block witize L equal to ranga and a
logarithmic standard deviatiom= 2: "True" block transformation functiap, (determined
from 100,000 simulations) and approximations predithty models DGM1 and DGM2.

WhenL /a =10, the coefficient, is equal to 0.271 in 1D, 0.077 in 2D, and
only 0.022 in 3D, and like in the preceding casean have much larger values
when o exceeds 1. Model DGM1 presents a slight bias atetkiremes of the
distribution, whereas DGM2 is biased everywheredboge to the median (see [1]
p. 454 in the 2D case with= 1.5).
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Conclusion

This validation exercise shows that the original NDIGmodel of Matheron [5]
gives a very good approximation to the true bloisirithution, except for extreme
values when the logarithmic standard deviationeg/varge. The variant DGM2
of Emery [3] is also a very good approximation te true distribution provided
that we are in one of the following situations: tfi¢ block size is small with
respect to the range or (ii) the logarithmic stadddeviation is not too large or
(iii) we are not interested in the distribution lufjh grades. In such a case, this
variant can be applied safely.

Further checks are in progress. The approximatfadheo DGM models has to
be quantified also in 1D and in 3D (the approximatis all the less valid as the
space dimension increases). It is also interedtingxamine other covariance
models forp(h): Whena is fixed, the solution provided by DGM models dege
only onr but two covariance models that would give the samalue do not
necessarily give the same true block distributiinally, the presence of a nugget
effect extends the validity of DGM models but this to be quantified.

We only addressed the global change of supportlg@mbrlhe local change of
support (prediction of the block distribution cotminal on neighboring data) has
been examined in [2]: Cressie considers unbiasgdolanal estimators that are
exponentials of the simple or ordinary kriging esttors ofY(v), which amounts
to the assumptions of model DGM2. The experimemhgares this ordinary
lognormal kriging with the optimal solution providldy conditional expectation,
obtained by a Monte Carlo method. The results atdichat ordinary lognormal
kriging performs well in situations where the blosize is small with respect to
the range, the lognormal standard deviation isomiarge, and the neighborhood
is sparse. The first two conditions are requiredHtie global model to be efficient.
The third one expresses that conditional expectatiakes better use of numerous
data than an estimator whose form is limited to éxponential of a linear
combination of the logarithms of the data.
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