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Abstract Basin and Petroleum Systems Modeling is important for understanding
the geological mechanisms that characterize reservoir units. Bayesian Networks are
useful for decision making in geological prospect analysis and exploration. We unify
these two methodologies in this paper. The probabilistic description of the Bayesian
Network is trained by using multiple scenarios of Basin and Petroleum Systems
Modeling. A range of different input parameters are used for total organic content,
heat flow, porosity, and faulting, to span a full categorical design for the Basin and
Petroleum Systems Modeling scenarios. Given the consistent Bayesian Network for
trap, reservoir and source attributes, we demonstrate important decision making ap-
plications such as evidence propagation and the value of information.

1 Introduction

The correct integration of geological and geophysical information remains a chal-
lenge in oil and gas exploration that will increase in importance with increasing
costs of new targets. Currently it is common practice among geologists to quantify
information about risk through detailed exploration analysis, and then forward these
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results to the management. In this work we propose a workflow integrating directly
basin modeling scenarios and decision strategies in a Bayesian Network (BN) for-
malism.

The idea of modeling play element prospect dependencies with BNs was pro-
posed in [10], where a BN model was constructed for modeling the likelihood of
source presence in a part of the North Sea. One of the critical points of [10] was
the substantial belief in expert opinion. In the present paper we therefore propose an
alternative idea for building the BN, integrating expert opinions with hard data com-
ing from standard geological modeling procedures. The main idea is to construct a
BN model that is consistent with the results of several basin modeling outputs. We
train the probabilistic structure of the BN from the multiple basin modeling outputs.

The idea of integrating statistical design of experiment (DOE) with oil and gas
problems is not new: [5] and [6] propose a DOE based approach for reservoir mod-
eling simulations; more recently [4] extends DOE and MonteCarlo (MC) methods
in order to study uncertainties in geophysics, geology and reservoir engineering.

The abstract is organized as follows: In Section 2 we introduce Basin and
Petroleum System Modeling (BPSM) and the case study; in Section 3 we discuss
the DOE simulation design. In Section 4 we show the procedure for developing the
BN model. Finally, in Section 5 we present possible applications and discuss results
and conclusions.

2 A Case study for basin and petroleum systems modeling

The purpose of BPSM [9] is to simulate the geological and chemical reactions that
have occurred in the basin through geological time, in order to identify the critical
aspects of the HC generation, migration and accumulation. The main geological
risk factors in oil and gas exploration are the trap (consisting of trap geometry,
reservoir and seal), the oil and gas charge (reservoir and source factors), and the
timing relationship between the charge and the potential traps.

We have decided to use as training model a synthetic basin developed in the
Petroleum Geology class at NTNU, Trondheim, Norway. The controlled basin en-
vironment is called Bezurk Basin (Figure 1), and it includes three potential kinds
of prospects, namely anticlinal prospects, fault prospects and a shoestring prospect.
The latter is located within impermeable shale and consequently the chances of
HCs migrating into this reservoir are low. The Bezurk basin mimic the behavior of
a possible real basin with a main anticlinal trap on the NE sector of the basin, and
a series of faults in the NS direction. A major uplift followed by a strong erosion
has occurred in the western part of the basin, and this activity has caused the major
faulting resulted in Faults 1 and 2.

We have identified 2 main plays, corresponding to the two potential reservoir
rocks (see Figure 1):

• The reservoir of the Mmd play in the Bezurk Basin is made up of sandstone,
deposited in a regressive shallow marine environment during the time interval
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Fig. 1 Bezurk basin; we see the 100 km2 area and the different thicknesses of the layers; in the
west part of the basin we identify the two faults that characterize the system.

20Ma to 15Ma. The sandstone reservoir has porosity ranging from 12% to 30%,
which is considered to be a good porosity. The reservoir covers the whole area on
the east side of the faults, and has a thickness ranging from about 300-900m. We
have distinguished two possible accumulations for this play, one in the eastern
part of the basin, under the anticlinal trap, and one in the western part, against
the fault trap. We name the accumulations TE (Top East) and TW (Top West).

• The reservoir of Ou play is deposited from 34Ma to 23Ma in a transgressive shal-
low marine environment with the overlying Mlf shale acting as a seal. HCs are
expected to generate in the underlying Eek-coal that is deposited on a coastal
plain in the same transgressive system as the reservoir. The potential traps are
the western faults and the northeastern anticlinal, which are the same potential
traps as the younger and priory outlined Mmd-play. The porosity of the Ou reser-
voir ranges from 7% to about 20%, which overall is lower than compared to
the Mmd reservoir. Both reservoirs have the same kind of sandstone, but due to
compaction the lower reservoir (Ou) has a lower porosity than the upper reservoir
(Mmd). Also for this play we have identified two possible accumulations in the
anticlinal and in the fault trap, and we have named them BE (Bottom East) and
BW (Bottom West).
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3 Basin modeling scenarios

During a preliminary analysis of the basin we have been able to identify four critical
elements that constitute possible sources of uncertainty in our model:

1. The assigned Total Organic Carbon (TOC) for the source rocks was vaguely
specified in the original model. The TOC is a measure of the concentration of
organic material in source rocks [1], and is reported by the weight percentage of
organic carbon.

2. The same argument hold for porosity to the reservoir rocks, whose original data
are rather uncertain.

3. The boundary conditions, an in particular the Heat Flow (HF), could represent
an exogenous source of uncertainty in our model.

4. There is a zone in the western part of the basin characterized by a prominent
faulting activity; for this reason we can hypothetize a possible structural uncer-
tainty, by adding or removing a fault element referred to as fault 3.

3.1 A full factorial design

In order to study the interactions among these different factors, we have designed a
full factorial study [7], where each factor is represented by two to three levels. We
have chosen three levels for the HF (HF): cool (50 mW/m2), normal (60 mW/m2) or
hot (70 mW/m2); it is expected that a cool basin mainly will stay in the oil window,
consequently generating mostly oil, while a warm basin will reach the gas window
at an earlier stage, and therefore generate more gas. We have further chosen two
levels for the porosity of the reservoir rock, with porosity/depth functions starting
from different values . We use two levels for the TOC content of both source rocks,
with TOC ranging from 8% to 4% for the Mlf black shale and from 20% to 10% for
the Eek coal. Finally, we select two levels, open or close, for a presence of a new
fault (Fault 3) located west of Fault 2. From the first simulation, we observe that
the HCs which accumulated in The Fault Trap were lost during the time period of
1.77Ma to 1.55Ma. The reason for adding the Fault 3 is to see if this fault could trap
HCs and potentially create a prospect.

3.2 Simulation outcomes

From the different runs in the BPSM software Petromod, we measure the size and
kind of HC accumulations. We further measure which source rock has generated
them and we observe the migration path. We also gain insights of HC production,
the expulsion from the source rock and accumulation in the reservoirs (see Table
1). As a result, the amounts of HC that have leaked is available, and we can try to
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explain this leakage phenomenon through the observation of the complete evolution
of the basin.
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Fig. 2 Boxplot, oil and gas generation and accumulation data for play Ou (and corresponding
source rock Eek)
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The main factor driving the HC generation is the level of maturation of the source
rock itself, that ultimately depends on the HF and on the TOC. The analysis shows
that higher HF allows a faster maturation and therefore a more abundant generation
(see Figure 2, 1st and 2nd rows) of gas in both the source rocks, while for what con-
cerns the oil generation there are no significant differences in the impact of HF for
the Eek source rock. This means that the oil generation has reached the maximum
potential already when HF is on the medium level, and this is consistent with our
hypothesis.

For what concerns the accumulations (Figure 2, 3rd and 4th rows), we can see
that the main factor is the porosity, followed by the HF again, especially for what
concerns the Ou accumulations. It is quite natural that the porosity is relevant, since
a sandstone with good porosity can trap much more HC than a bad reservoir. It is
interesting to notice how the effects of HF and TOC tend to disappear, showing that
the surplus of HC generated has almost totally been lost before the seal rock was
deposited.

Finally, Fault 3 in the western part has a strong effect only when it is leaking.
When the fault is not present, there is no leaking through the fault’s wall. On the
contrary, when the fault is present, there is some leaking against the fault, especially
when there is an early maturation (high HF). The fault has clearest effect when mea-
suring the outflow from the side. In contrast, the outflow from the top and the total
outflow is governed by the HF and TOC, since the scenarios with early maturation
leak most of the HC before the seal is formed.

Table 1 Simulation data for the first 12 scenarios, concerning the generation, expulsion, accu-
mulation and leaking of the HC in the whole basin. Values are in MMBOE (millions barrels oil
equivalents).

Model 1 2 3 4 5 6 7 8 9 10 11 12
Gen Mlf 2422 2057 5783 5193 9828 9239 2421 2054.8 5774 5182 8903 8477

Gen Mlf Gas 69 55 259 215 902 762 69 55 258 214 634 554
Gen Mlf Oil 2353 2002 5524 4978 8926 8477 2352 1999 5516 4968 8269 7923

Gen Eek 1621 1488 2191 2121 2575 2510 1629 1491 2191 2121 2466 2423
Gen Eek Gas 95 74 356 307 727 662 95 74 357 306 651 610
Gen Eek Oil 1526 1413 1834 1814 1848 1848 1534 1417.2 1834 1814 1815 1813

Gen Tot 4044 3545 7975 7314 12403 11749 4051 3546 7966 7304 11369 10900
Exp Mlf 1468 1152 4830 4202 9334 8656 1465 1148 4811 4184 8294 7800
Exp Eek 1479 1332 2131 2051 2552 2483 1487 1336 2132 2052 2443 2396
Exp Tot 2947 2484 6961 6252 11886 11139 2952 2485 6944 6236 10737 10196

Acc Mmd 694 282 951 268 869 252 579 263 878 245 809 233
Acc Ou 418 121 252 65 39 18 417 114 248 56 40 21
Acc Tot 1113 403 1203 333 909 270 997 377 1126 302 850 253

Outflow Top 0 0 977 1260 3837 4297 300 238 2427 2355 4666 4834
Outflow Side 1825 2076 4736 4634 7075 6527 1618 1858 2929 3313 3293 3480

HC losses 1834 2080 5757 5920 10977 10869 1955 2107 5817 5933 9887 9943
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4 Building the network

The experimental design setup gives better insight of the key factors responsible for
the main geological processes in the basin. We will next use the multiple-scenario
information to build a dependency structure for the segments. This takes the form
of a BN that will be useful for decision making.

A BN is characterized by a set of nodes and edges. The nodes are random vari-
ables, that may be discrete or continuous. As an example, we will define nodes for
trap presence (on/off), which is a binary random variable. Edges define the con-
ditional probability structure of the variables, connecting parents to children. For
instance, we will define a parent node for ’Trap Anticline’ that can be on/off. This
node has two children: ’TrapTopEast’ and ’TrapBottomEast’, which are also on/off,
and they have conditional probability distributions depending on the outcome of the
parent node. Let V be the set of all nodes, xv the variable at node v ∈ V , and x the
vector of all node variables, the joint probability model is defined by

p(x|θ) = ∏
v∈V

p(xv|xpa(v),θ
v).

Here, pa(v) denotes the parents of node v. Further, θ denotes the set of model param-
eters required for the conditional probabilities tables (CPT), where θ v is the local
parameter for node xv. We show below how we can train or learn these parameter
values from the multiple-scenario BPSM outputs.

The complete set of 24 scenarios, and associated observations, are shown in Fig-
ure 3 (generation) and in Figure 4 (accumulation). We have used a standard k-means
algorithm with k = 2 (accumulation) or k = 3 (generation) for assessing the thresh-
old for categorizing the data. Note that the data in this way become proxy for the
knowledge of geological elements, that could potentially be observed at segment
level. From the categorical data we learn the BN branches for trap, reservoir, and
source separately. The resulting BN model (Figure 5) is derived in an explicit way
from the data, while the CPT of the last level (from Trap, Reservoir and Source to
the accumulations) have been assigned with external subjective considerations.

Fig. 3 Data for learning the
source network. Top: values
for the HC generation. Mid-
dle: values for Eek and Mlf
generation. Bottom: values for
oil and gas generation in each
of the Eek and Mlf source
rock. Values in MMBOE.
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Fig. 4 Data for learning reser-
voir network. Top: values for
the HC accumulation. Middle:
values for Mmd and Ou gen-
eration. Bottom: values for oil
and gas generation in each of
the Mmd and Ou source rock.
Values in MMBOE.
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Fig. 5 BN with trap(top),
reservoir(left) and
source(lower right) branches.
Top nodes are discrete, bot-
tom nodes are Gaussian.
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While it seems reasonable to have discrete nodes in the top parts of the network,
since attributes such as source, reservoir and trap are on/off or multi-level features,
it may be more realistic to have continuous bottom nodes that mimic the actual be-
havior of the simulated scenarios. We therefore split each of the bottom nodes TE,
BE, TW and BW in two nodes, one for gas volume and the other for oil volume,
and state that they represent accumulation distributions whose mean and (possibly)
variance depend on the states of their parents. The simultaneous use of discrete and
continuous variables in BN has been explored in [3] and [8]; an inference algo-
rithm is presented in [11]. The related CPTs have to be assessed, for example the
conditional probability density of BEg is:

pBEg(x|TraBE ,ResOuGas,SouEekGas)∼ N(µBEg,σ
2
BEg),
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where µBEg is the conditional mean value and σBEg is the conditional standard de-
viation of this Gaussian distribution.

The effects of this parametrization on the HC distributions together with the es-
timated recoverable resources (recovery factor 0.45 for oil and 0.75 for gas) can be
seen in Figure 6.

The resulting distributions are multimodal, and the different modes reflect the
likelihood of being in each of the 24 configurations taken into account.
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Fig. 6 Oil and gas volume distributions for segments BE and TE and expected associated total
recoverable resources for TE (top right) and BE (bottom right). Volume distributions are actually
truncated in 0 (red line), resulting in mixture discrete/continuous distributions.

5 Applications and conclusions

We next illustrate how BNs are useful for decision making purposes.
The distributions are immediately updated as soon as more information are avail-

able. Let us focus our attention on the gas accumulation relative to prospect TE.
In this case we may receive an information that confirms our likelihood about the
presence/absence of the reservoir or the trap in that prospect. The network is imme-
diately updated: in this case the effect of a positive reservoir layer is much stronger
than that of a positive trap, since the prior likelihood for the anticlinal trap is al-
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ready equal to 0.9, while the uncertainty about the goodness of the reservoir layer
(porosity) is much higher.

Similar measurements can lead us to the evaluation of so-called what-if scenar-
ios: we are interested in the behavior of the network in case of evidence coming
directly from the observation of a HC column in another prospect. We use as ex-
ample the prospect TE, given possible observations from prospects BE (Figure 7)
and TW (Figure 8). In the first figure we see that even a rich observation in BE is
not sufficient to solve the multimodality of the original distribution, since the pos-
sible uncertainty about the quality of the reservoir remains (TE and BE belong to
2 different reservoirs). In the second figure we see that both an extremely poor and
a rich observation in the fault prospect TW substantially change the shape of the
posterior oil TE distribution. As we have already pointed out, a positive HC column
observation in a difficult prospect such as TW confirms the quality of the reservoir
and the charge, and this has a high impact on TE.

A full evaluation of such dynamics leads us to the computation of the Value of
collecting perfect Information [2] in the four different prospects.
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Fig. 7 Oil TE distribution before and after observation of oil column in BE

The work underlines the importance of assessing uncertainty in petroleum sys-
tems. The emphasis is less on knowing the right answer, that may never be known
before drilling, but rather on determining the range of outcomes given the available
data and state of understanding of the petroleum system. Problems are caused by the
complex and often non linear interactions among the different parameters, that make
the prediction problem extremely difficult. Currently these problems are solved run-
ning several simulations with different parameters, and studying the uncertainty in
the resulting accumulation distribution as main or sole output. We believe that this
process is not sufficient any longer, since there are too many parameters that remain
hidden (implicit parameters) when the effect of many parameters is tested at the
same time. With our framework we provide an alternative solution by making ex-
plicit all the correlated parameters, though not chosen arbitrarily, but derived from
a multiple scenario evaluation. We have shown how BPSM allows partially auto-
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Fig. 8 Oil TE distribution before and after observation of oil column in TW

matic assessment of the BN probability structure, and our interest is in deepening
this aspect by integrating even more the two frameworks.
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