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Abstract Starting from the Gibbs sampler, an iterative algorithm is designed for
simulating a gaussian random vector, that requires neither the inversion nor the fac-
torization of a covariance matrix, without resting on a markovian assumption. A
brief survey is given of the various ways to implement it. An example illustrates its
feasibility, and a theoretical result is stated about its rate of convergence.

1 On the Gibbs sampler and its implementation

The motivation for the present work is the conditional simulation of a number of
stochastic models that involve gaussian random fields, such as certain point pro-
cesses (Cox-lognormal), random sets (gaussian excursion sets) or random fields
(substitution random fields), to name but a few. The underlying idea is to have an
iterative algorithm for simulating the gaussian field. At each step a candidate field
is provided that is subsequently accepted or rejected depending on the conditions to
honour.

Among all possible algorithms, the most classical one is certainly the Gibbs sam-
pler developed by Geman and Geman [4]. From a geostatistical standpoint, it works
as follows. Let Y = (Ya,a ∈ Ao) be a standardized (zero mean, unit variance) gaus-
sian random vector with covariance matrix C. Let also yc be the current step of the
simulation. At the next step, a component a is selected at random and the current
value yc

a is replaced by a new value yn
a that is drawn from a gaussian distribution,

whose mean ya(Aa
o) = ∑b 6=a λ a

b yc
b is the simple kriged estimate of the ath component

on the other components of Ao, and variance σ2
a is the corresponding kriging vari-

ance. All other components remained unchanged, i.e. yn
b = yc

b for b 6= a, or yn
Aa

o
= yc

Aa
o

Christian Lantuéjoul and Nicolas Desassis
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for short. Here is the corresponding algorithm. It has been written with some redun-
dancy to facilitate its comparison with the one of the next section.

(i) generate independently yc
a ∼ G for each a ∈ Ao;

(ii) generate a∼U (Ao);
(iii) generate yn

a ∼ G
(
ya(Aa

o),σ2
a
)
, and put yn

Aa
o
= yc

Aa
o
;

(iv) put yc
Ao

= yn
Ao

and goto (ii).

An interesting aspect of this approach is that all (simple) kriging weights as well
as all kriging variances can be derived from the entries of the inverse C−1 of the
covariance matrix:

λ a
b =−C−1

ab

C−1
aa

σ2
a =

1
C−1

aa
(1)

Fig. 1 Simulation of a gaussian random field by an approximate Gibbs sampler (circular neigh-
bourhoods of radius 15). This figure shows how the simulation evolves as the number of scans
(number of updating of each pixel) increases
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Unfortunately, when C is of large dimension the computation of C−1 is simply
not possible and the Gibbs sampler cannot be rigourously implemented. In such a
case, a natural approach is to restrain the number of components for kriging Ya. It
turns out that this approximation is sometimes, but not always, workable. Consider
for instance the simulation of a standardized gaussian random field with a spherical
variogram of range 10 on a 100× 100 grid (unit mesh size). The results look per-
fectly satisfactory when all krigings are performed using circular neighbourhoods
of radius 15 (cf figure 1) and the statistical fluctuations obtained coincide with those
that we should expect owing to the variogram model and the size of the simulation
field.
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As this procedure is rather long time consuming, another experiment was con-
ducted by reducing the radius of the kriging neighbourhoods (5 instead of 15). At
the outset both simulations look similar but the situation abruptly changes after 200
scans. Then the texture of the spherical model fades out, its range lengthens and
the contrasts become more pronounced (cf. figure 2). A more explicit description of
what happens appears on figure 3. It turns out that the maximum and the minimum
of the simulation are respectively monotonically increasing and decreasing to reach
values well beyond the capabilities of the model. In other words, the algorithm di-
verges. One cannot exclude the conjecture that this problem has to be encountered
whenever the neighbourhood radius has been restrained, even though it may go un-
noticed when the number of scans performed is too small. More likely, there exists
a critical neighbourhood radius below which it diverges and beyond which it con-
verges. In which case, this would be a typical example of a phase transition that is
well known among the community of physicists [1].

Fig. 2 Simulation of a gaussian random field by an approximate Gibbs sampler (circular neigh-
bourhoods of radius 5). This figure shows how the simulation evolves as the number of scans
increases
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In what follows, a variation of the Gibbs sampler is proposed to simulate a gaus-
sian random vector without inverting its covariance matrix. Thus, the difficulties
associated with limited neighbouthoods are bypassed.

2 From the Gibbs sampler to a Gibbs propagation algorithm

Let again Y be a standardized gaussian random vector with covariance matrix C.
Exactly as did Galli and Gao in [3], it is convenient to introduce the random vec-
tor X = C−1Y . X is also a gaussian random vector and it covariance matrix is C−1.
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Fig. 3 The values taken by the extrema of the simulation show that the algorithm diverges

Combining this with the trivial remark that the inverse of C−1 is precisely C and
using equation (1), it appears that the kriging of Xa on the other components of X
takes the tractable expression xa(Aa

o) = −∑b 6=a Cabxb. On the other hand, the asso-
ciated kriging variance is 1/Caa = 1. Thus the Gibbs sampler can be applied to X
free of any approximation.

This provides an algorithm for simulating Y . At each iteration, a step of the Gibbs
sampler is first performed on X , then Y is updated accordingly. To be specific, let
a be the component of X that is to be modified by the Gibbs sampler (hereunder
referred to as a pivot). Then the new values of X are related to the current ones by
the formulae xn

a = −∑b 6=a Cabxc
b + u with u ∼ G and xn

b = xc
b for b 6= a. Noting that

xn
a can also be rewritten as −yc

a + xc
a +u, it follows that the new values of Y satisfy

yn
b = ∑

c
Ccbxn

c = ∑
c6=a

Ccbxc
c +Cab(−yc

a + xc
a +u) = yc

b +Cab(−yc
a +u)

This formula is valid for each component b. In particular, for b = a, we obtain
yn

a = yc
a +(−yc

a +u) = u. Finally, the current and the new values of Y are related by
the formula

yn
b = yc

b +Cab(yn
a− yc

a) (2)

In other words, at each step a gaussian value is assigned to a random pivot, then
propagated to the other components. Here is the corresponding algorithm:

(i) set yc
Ao

= 0;
(ii) generate a∼U (Ao);
(iii) generate yn

a ∼ G , and put yn
b = yc

b +Cab(yn
a− yc

a) for each b 6= a;
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(iv) put yc
Ao

= yn
Ao

and goto (ii).

Note that the intialization step has been modified. Indeed, it has been experimen-
tally found that the convergence of this propagation algorithm is faster when y is
initialized with zeroes than with independent gaussian values.

As an illustration, consider the simulation of a gaussian random field with hyper-
bolic variogram

γ(h) =
|h|

20+ |h|
in a field 100× 100 (unit mesh). The lefthand side of figure 4 shows how the vari-
ogram of a simulation evolves as the number of scans (number of updating of each
pixel) increases. Such an exercise can be replicated. It turns out that less than 100
scans are required to reproduce the statistical fluctuations expected from the model.
The righthand side of the same figure also shows the regional variograms of 5 inde-
pendent simulations obtained after 100 scans.
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Fig. 4 Left, evolution of the variogram of a simulation versus the number of scans. Right, the
variograms of 5 simulations after 100 scans

Other experiments have been conducted with the so-called stable variogram

γα(h) = 1− exp
(
−

( |h|
a

)α)
0 < α ≤ 2

by fixing the scale factor a to 30 and varying the shape parameter α from 0.5 to 2.
The results are presented on figure 5. When α = 0.5, the convergence is quite fast,
and the statistical fluctuations are properly reproduced with no more than 50 scans.
For α = 1 and α = 1.5, this number is respectively equal to 100 (exactly as for the
hyperbolic variogram) and 150. When α = 2, 200 scans are not sufficient to ensure
the convergence.

How can these results be interpreted? These 4 variograms mainly differ by their
behaviour at the origin, namely non differentiable with infinite slope for α = 0.5,
non differentiable with finite slope for α = 1, once differentiable for α = 1.5 and
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Stable variogram of order 0.5
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Stable variogram of order 1
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Stable variogram of order 1.5
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Stable variogram of order 2

Fig. 5 Satistical fluctuations associated with stable variograms of order 0.5, 1 (exponential), 1.5
and 2 (gaussian) after 200 scans. The less regular the variogram at the origin, the faster the conver-
gence of the simulation algorithm

infinitely differentiable for α = 2. Accordingly, the rate of convergence seems to
partly governed the degree of regularity of the variogram at the origin.

3 Generalizations

An attractive aspect of this algorithm is that it can be generalized in multiple ways.

A first generalization consists of generating the value at the pivot as a function
of its current value. For instance, one can take yn

a = ryc
a +

√
1− r2u with u∼ G and

|r| < 1. In the case r = 0, the algorithm of section 2 is retrieved. For r ≈ 1, the
new pivot value is not very different from the current one, which is often useful
when this propagative algorithm is resorted to specify a candidate vector that has to
be subsequently validated as in Metropolis-Hastings type algorithms [5]. Too large
a discrepancy between the current and the new vector would result in too high a
rejection rate.

A second generalization deals with a blocking strategy of pivots. Let us start by
writing equation (2) like

yn
b−Cabyn

a = yc
b−Cabyc

a b ∈ Ao
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which expresses that the propagation algorithm preserves the (simple) kriging resid-
uals of all components of Ao on the pivot a. We can wonder whether the approach
remains valid when the pivot a is replaced by a block pivot, say A ⊂ Ao. If so,
then it would suffice to generate yn

A according to a centered gaussian distribution
with covariance matrix CAA (the covariance matrix of YA), and then update the other
components using the formula

yn
b− yn

b(A) = yc
b− yc

b(A) b ∈ Ao

where yn
b(A) and yc

b(A) are the (simple) kriging of the bth component on those of A.
It can be shown that this generalization effectively holds provided that the distribu-
tion S used for generating the block pivots gives each component a non-negligible
chance of being selected as a pivot at each iteration (see [5] for a proof). The algo-
rithm using a blocking strategy is thus as follows:

(i) put yc
Ao

= 0;
(ii) generate A∼S (Ao) and yn

A ∼ G (0,CAA);
(iii) put yn

b = yc
b + yn

b(A)− yc
b(A) for each b ∈ Ao\A;

(iv) put yc
Ao

= yn
Ao

and goto (ii).
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Fig. 6 Statistical fluctuations associated with the gaussian variogram after 50 scans using a block-
ing strategy of 5 pivots

Experiments have shown that resorting to block pivots is more efficient than point
pivots. For instance, the simulation of the random vector with gaussian variogram
of figure 5 has been reconsidered. The algorithm is run by successive scans. At each
scan, the 10000 components are sorted at random and then batched into blocks of 5
pivots. Thus each scan consists of 10000/5 = 2000 iterations. Using this approach,



8 Christian Lantuéjoul and Nicolas Desassis

the rate of convergence is 4 times faster than that obtained with point pivots (see
figure 6).

Of course, both generalizations can be combined. Thus, yn
A can be generated as

a function of yc
A, for instance by putting yn

A = ryc
A +

√
1− r2uA, where |r| < 1 and

uA is a centered gaussian vector with covariance matrix CAA. Moreover, it can be
established that the transition from yc

Ao
to Y n

Ao
is reversible as soon as the transition

from yc
A à yn

A is revertible for each block pivot A.

4 About the rate of convergence

Suppose that simulation is initialized as a gaussian random vector with covariance
matrix C(0) (this includes the case where it is set to zero). Then the random vector
produced at the nth scan is also gaussian and its covariance matrix C(n) is related to
C(0) and C by the formula

C(n)−C = Bn(C(0)−C)tBn, (3)

with B = (Id−L)−1U , Id being the identity matrix, and L and U respectively de-
noting the lower and the upper triangular part of the matrix C [2]. It follows that the
rate of convergence of the algorithm is geometric and governed by the square of the
spectral radius of B.

Things behave similarly in the case where yn
α = ryc

α +
√

1− r2u, and the expres-
sion of C(n) is similar to that of formula (3), except that the matrix B is replaced by
another matrix Br that is defined as

Br = [Id− (1− r)L]−1 [rId +(1− r)U ]

One could think that the rate of convergence is optimal when r = 0. This is not what
is observed in practice. It has been experimentally observed that the minimum of
the spectral radius of Br is often reached for negative values of r ranging between
−0.3 and −0.6.
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