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Abstract The need of combining in a probabilistic framework different sources of
information is a frequent task in earth sciences. This can occur for example when
modeling a reservoir using direct geological observations, geophysics, remote sens-
ing, training images etc. For example, the probability of occurrence of a certain
lithofacies at a certain location can easily be computed conditionally on the event
observed at each source of information. The problem of aggregating these different
conditional probability distributions into a single conditional distribution arises as
an approximation to the inaccessible genuine conditional probability given all infor-
mation. This paper makes a formal review of most aggregation methods proposed
in the literature with a particular focus on their mathematical properties. Calibration
of the aggregated probability distribution is of particular importance. It is known
that linear aggregation operators are not calibrated. Here, we show that if a cali-
brated log-linear pooling exists, then it is the log-linear pooling with parameters
estimated from maximum likelihood. Simulations in a spatial context illustrate the
performance of these operators.
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1 Introduction

This extended abstract summarizes the work of Allard et al. (2012).We want to as-
sess the probability of a given event A, conditional on the occurrence of a set of data
events, Di, i = 1, . . . ,n, on the basis of the simultaneous knowledge of the corre-
sponding conditional probabilities P(A | Di). Here we consider only the case where
there is a finite number of possible outcomes for A. Let A be the finite set of events
in Ω such that the events A1, . . . ,AK of A form a finite partition of Ω . The joint
probability P(A,D1, . . . ,Dn) is unknown and not accessible. We will approximate
the full conditional probability P(A|D1, . . . ,Dn) by means of a pooling operator PG:

PG(P(A|D0), . . . ,P(A|Dn))≈ P(A|D0, . . . ,Dn), A ∈A . (1)

Here P(A|D0) = P0(A) is an a priori probability independent on all P(A |Di). It can
be thought of as arising from an abstract and never specified information D0. In the
following, we will sometimes use the notation Pi in place of P(A|Di) and PG(A) in
place of PG(P0,P1, . . . ,Pn)(A).

2 Some mathematical properties

Definition 1 (Unanimity/Convexity). Given Pi = p for i = 1, . . . ,n, a pooling oper-
ator PG preserves unanimity when PG = p. Moreover, PG is convex when it always
verifies:

PG ∈ [min{P1, . . . ,Pn},max{P1, . . . ,Pn}] (2)

Convexity is a sufficient condition for unanimity, but these two properties are not
necessarily desirable. Indeed, consider for example two information D1 6= D2 and
an event A ⊂ (D1 ∩D2). Then, P(A | D1) = P(A)/P(D1), and P(A | D1 ∩D2) =
P(A)/P(D1 ∩D2). Now, (D1 ∩D2) ⊂ D1 implies that P(D1 ∩D2) < P(D1). Hence
P(A |D1∩D2)> P(A |D1). Therefore, the full conditional probability of A is larger
than any partial conditional probability. A convex pooling operator cannot account
for such kind of situations.

Definition 2 (External Bayesianity). Given a likelihood function L(·) on the events
in A , and let PL

i (A) = PL
G(P1, . . . ,Pn)(A) define the Bayesian updating of Pi by L.

Then, an aggregation operator is said to be external Bayesian if the operation of
updating the probabilities with the likelihood L commutes with the aggregation op-
erator, i.e. if

PG(PL
1 , . . . ,P

L
n )(A) = PL

G(P1, . . . ,Pn)(A). (3)

This interesting property is equivalent to the weak likelihood ratio [Bordley, 1982].

Definition 3 (0/1 forcing property). Let us suppose that there exists a source of
information i such that P(A|Di) = 0 and P(A|D j) 6= 1 for j 6= i. In this case, an
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aggregation operator that returns PG(A) = 0 is said to enforce a certainty effect, a
property also called the 0/1 forcing property [Allard et al., 2011].

3 Pooling operators

Among the criteria that can be used for classifying pooling operators, the dichotomy
between methods that combine probabilities using the addition and methods that use
the multiplication is probably the most enlightening.

3.1 Linear pooling and Beta-transformed linear pooling

An intuitive way of aggregating the probabilities P1,. . . ,Pn is the linear pooling:

PG(A) =
n

∑
i=1

wiPi(A), (4)

where the wi are positive weights verifying ∑
n
i=1 wi = 1. This pooling operator is

convex, but neither 0/1 forcing nor external Bayesianity is verified. The probability
PG is often multi-modal, since Eq. (4) corresponds to a mixture model or, in Boolean
terms, to the operator “or”. In a geosecience context, a pooling paradigm guided by
the “and” logic appears more suitable for aggregating different information about
the same object.

Ranjan and Gneiting (2010) proved that linear pooling is intrinsically subopti-
mal according to criteria presented in the next sections. In order to overcome this
limitation they proposed the Beta-transformed Linear Pooling (BLP):

PG(A) = Hα,β

(
n

∑
i=1

wiPi(A)

)
, (5)

where ∑
n
i=1 wi = 1 and Hα,β is the cumulative density function of a Beta distribution

with shape parameters α > 0 and β > 0. This pooling operator does not satisfy any
of the properties listed in Section 2, unless in the case α = β = 1, that is when it
corresponds to a linear pooling. Ranjan and Gneiting (2010) showed on simulations
and on real case studies that the Beta-transformed linear pool outperforms any linear
pooling and that it presents very good performances.
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3.2 Log-linear pooling

Genest and Zidek (1986) proved that any pooling operators depending explicitly on
the events in A , and verifying external Bayesianity must be of the form:

PG(A) ∝ H(A)P0(A)1−∑
n
i=1 wi

n

∏
i=1

Pi(A)
wi , (6)

with H(A) being an arbitrary bounded function playing the role of a likelihood on
the elements of A . Probability distributions obtained with log-linear operators are
in general unimodal and less dispersed than those obtained with linear operators.
Clearly, log-linear pooling operators verify the 0/1 forcing property since they are
based on a multiplication.

A particular log-linear operator is obtained from a maximum entropy princi-
ple. The maximum entropy pooling operator PG verifying PG(P0)(A) = P0(A) and
PG(P0,Pi)(A) = P(A|Di) for i = 1, . . . ,n is of the form (6) with wi = 1 for i = 1, . . . ,n
and H(A) = c. It can be shown to be equivalent to the conditional independence of
all events Di, given A [Allard et al., 2012]. The sum Sw =∑

n
i=1 wi plays an important

role in Eq. (6). If Sw = 1, the prior term is filtered out (w0 = 0) and unanimity is pre-
served. Now, suppose that P1 = · · ·= Pn = p. In this case, if Sw > 1, the prior term
has a negative weight, and PG will be further away from P0 than p. The opposite
holds when Sw < 1.

3.3 Tau model

Journel (2002) derived a formula for aggregating probabilities that has been later
named the Tau model. Let us define odds O(A), with O(A) = P(A)/(1−P(A)). The
Tau model aggregates the odds according to

OG(A) = O0(A)w0
n

∏
i=1

(
Oi(A)
O0(A)

)wi

= O0(A)w0−∑
n
i=1 wi

n

∏
i=1

Oi(A) (7)

where the weights wi can vary in [0,∞). This pooling operator wa also proposed in
Bordley (1982) in which it is shown that it is the only pooling operator verifying
the weak likelihood ratio. In the case of a binary outcome, it can be shown that this
pooling operator is mathematically equivalent to a log-linear pooling. In the more
general case this equivalence is lost. A complete formulation of the Tau model in
the general case is thus

PG(A) ∝ OG(A)/(1+OG(A)), with OG(A) = O0(A)1−∑
n
i=1 wi

n

∏
i=1

Oi(A)wi , A ∈A .

(8)
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4 Scores and calibration

A scoring rule S(PG,Ak) measures the discrepancy between P(·|D1, . . . ,Dn) and
PG(·) by assigning a numerical value, a score, based on PG and on the event Ak that
materializes. S(PG,P) will denote the expected value of S(PG,Ak) under the true
probability distribution P: S(PG,P) = ∑Ak∈A S(PG,Ak)P(Ak). We will only consider
scoring rules such that S(P,P) ≥ S(Q,P) for each distribution Q, with S(P,P) =
S(Q,P) if and only if Q = P. A divergence function d(Q,P) = S(P,P)−S(Q,P) can
be associated to the given scoring rule S.

Definition 4 (quadratic and logarithmic scores). The quadratic score, SQ, and the
logarithmic score, SL, are defined by

SQ(P,Ak) =−
K

∑
j=1

(δ jk− p j)
2; SL(P,Ak) = ln pk (9)

where δ jk is the Kronecker delta.

The corresponding divergence functions are the Euclidean distance dQ(Q,P) =
∑

K
k=1(pk−qk)

2 and the Kullback-Leibler divergence dL(Q,P)=∑
K
k=1 qk = ln(pk/qk).

When Q = P we have SQ(P,P) = 0, while SL(P,P) is the entropy of the distribution
P.

Definition 5 (Calibration). Let us introduce Y = (Y1, . . . ,YK) the random vector
corresponding to the outcome, in which Yk = 1 if the outcome is Ak and Yk = 0
otherwise. The operator PG is said to be calibrated if

P(Yk|PG(Ak)) = PG(Ak) (10)

for each Ak in A .

Ranjan and Gneiting (2010) proved that linear pooling operators are not calibrated.
However, they showed on simulated and real cases that a Beta transformed linear
pool can be calibrated. The calibration can be evaluated computing the squared dif-
ference between the empirical values of PG(Ak) and P(Yk|PG(Ak)).

4.1 Maximum likelihood estimation and calibration of log-linear
pooling

At the exception of the maximum entropy pooling which is parameter free, all meth-
ods presented above have some parameters that need either to be estimated or set by
the user.

When training data are available it is possible to estimate the optimum weights
according to the optimization of some criterion. We will present the likelihood ap-
proach for estimating the parameters for methods based on the multiplication of
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probabilities. A similar derivation for the linear opinion pool and its Beta transform
can be found in Ranjan and Gneiting (2010). Maximum likelihood estimation is a
special case of optimum score estimation, corresponding to maximizing the loga-
rithmic score. Given a training data set of size M,

{(Y(m),P(m)
0 (Ak), . . . ,P

(m)
n (Ak))}, m = 1, . . . ,M.

We will thus seek the vector of weights w= w1, . . . ,wK maximizing the score
∑

M
m=1 S(PG,w,Am

k ), which is equivalent to finding the maximum of the log-likelihood

L(w) = ln
M

∏
m=1

K

∏
k=1

(P(m)
G,k )

Y (m)
k =

M

∑
m=1

K

∑
k=1

Y (m)
k lnP(m)

G,k . (11)

Concerning the calibration of log-linear pooling, Allard et al. (2012) proved the
following result:

Theorem 1. Suppose there exists a calibrated log-linear pooling. Then, asymptot-
ically, it is the log-linear pooling with parameters estimated from maximum likeli-
hood.

5 Simulation example

Let us consider a Boolean model of spheres of radius r = 0.07, simulated in the
unit cube C . Let us denote X(s), s ∈ C its void indicator function and λ the
mean number of spheres per unit volume. The void probability is q = P(X(s) =
1) = exp(−λ4πr3/3) [Lantuéjoul, 2002]. A prediction point s0 is randomly lo-
cated in the unit cube and information points si, i = 1, . . . ,4 are randomly located
around s0. For this model, the conditional probabilities P(X(s0) = 1|X(si) = 1) and
P(X(s0) = 1|X(si) = 0) for i = 1, . . . ,4 can be computed explicitly.

A data set made of 50000 repetitions is built, and for this data set we computed
the likelihood, the quadratic score SQ and the calibration for the linear pool, the
Beta-transformed linear pool, the maximum entropy (ME) and the log-linear pool
(Table 1). For all methods except maximum entropy the weights were computed
with the maximum likelihood approach described in the previous section. Remem-
ber that since the considered event is binary, the Tau model is equivalent to the
log-linear pool. For comparison purpose, we also show the scores of the prior prob-
ability, P0 = P(X(s0) = 1), and the (exact) conditional probability given only one
data, P1 = P(X(s0) = 1 | X(s1)).

On this example the linear pooling of the four data leads to scores only slightly
better than considering only one data point. Beta-transformed linear pooling leads
to a real improvement to linear pooling: the prediction is calibrated and the score SQ
is significantly improved.

Surprisingly good performances are obtained with Maximum Entropy, perhaps
due to the Markovian nature of the Boolean model for which conditional expectation



Probability aggregation methods in Earth sciences 7

Table 1 Likelihood, quadratic scoring rule and calibration for a Boolean model with four data
points. Adapted from Allard et al., (2012).

− Loglik SQ Calib.

P0 29859.1 0.1981 0.0155
P1 16042.0 0.0892 0.0120
Lin. 14443.3 0.0774 0.0206
BLP 9690.4 0.0575 0.0008
ME 7497.3 0.0433 0.0019
Log.lin 7178.0 0.0416 0.0010

is a not too poor approximation. The log-linear model leads to the lowest Likelihood,
lowest score SQ and very good calibration.

6 Conclusion and Discussion

When training are available, maximum likelihood provides an efficient method for
estimating the parameters of any chosen model. On simulations, we were able to
show that quadratic and logarithmic scores are efficient tools for determining the
models leading to the best forecasts. They usually increase or decrease together.
Our main result states that for log-linear poolings, calibration implies parameters
estimated with maximum likelihood. The converse is not true in all generality. All
simulated examples have shown that log-linear pooling formula with parameters
estimated with maximum likelihood are very close to be calibrated.

A first conclusion, based on numerous simulations and examples, is that linear
methods should not be used alone for aggregating probability distribution. They can
be used if recalibrated with a Beta transformation whose parameters must be esti-
mated. A second conclusion is that methods based on product of odds (Tau model)
are not to be recommended. For binary events, they are equivalent to those based
on product of probabilities. For non binary events they usually perform less well
[Allard et al., 2012].

The main conclusion of this study is thus the following. For aggregating proba-
bility distributions, methods based on product of probabilities, in other words linear
combinations of log-probabilities, should be preferred. First, they are easy to imple-
ment and to understand. Second, their parameters are easy to estimate using maxi-
mum likelihood. This has profound implications on the practice of spatial prediction
and simulation of indicator functions. It implies that the kriging paradigm based on
linear combinations of bivariate probabilities and its sequential indicator simulation
(SIS) counterpart should probably be replaced by a different paradigm based on the
product of probabilities as already proposed in Allard et al. (2011).
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