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Abstract Economic analyses are often highly sensitive to accumulation size, thereby 
influencing when and at what cost a potential resource will become available. For 
established plays, it may be expedient to base predictions of future field sizes on 
previous discoveries. In most cases, the historical size distribution is inappropriate to 
apply to the remaining potential within an established play because the largest 
accumulations tend to be discovered early in the exploration process. This intentional 
sampling bias must be accounted for when projecting sizes of future discoveries, as 
does the tendency to underreport the ultimate recoverable volume of hydrocarbons 
early in the life of a field. Exploration can be represented as a sampling process that 
both is size biased (creamed) and truncated. One can in cases where this representation 
is appropriate obtain an unbiased estimate of the resource base population (parent 
population) parameters by correcting for the bias (un-creaming).This can be achieved 
by explicitly modeling the relation between the sample parameters and the population 
parameters. Field size data from the Gulf of Mexico shelf were used to explore the 
relationship between discovered and future field sizes. Using Beta distributions and 
distributions with the same uncreaming property as assumed parent populations, it is 
possible to simulate discovery sequences that closely match the historical development 
of the basin. A discovery sequence can be approximated using lognormal distributions 
across multiple stages of exploration and over a wide distribution of discovery sizes. 
These observations suggest that one cannot impute the shape of the underlying parent 
distribution from the size distribution of past discoveries. An advantage, however of 
using a Beta distributed parent population is that the creaming bias is represented by a 
single parameter that can be estimated from the discovery sequence and subsequently 
used for an unbiased estimation of the parent population that potentially can 
incorporate a larger number of small fields than the lognormal distribution, and thus 
may significantly impact play economics. 
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Introduction 

 

 
A histogram of the number of accumulations discovered in an assessment region 
is called an accumulation-size distribution. It shape reflects the parent size 
distribution of hydrocarbon accumulations (resource base) that exist in the 
assessment region, the efficiency of the discovery process, and economic 
constraints that limit the development of extremely small accumulations. 
Traditionally, accumulation-size distributions are approximately lognormal in 
form, with a pronounced tail extending to the larger accumulation sizes on the 
right. In a maturely explored assessment region, the right tail of the accumulation-
size distribution of discoveries will closely correspond to the shape of the 
underlying distribution of accumulations originally in place (the resource base) 
because creaming has resulted in the discovery of almost all the largest 
accumulations. The lognormal model must accordingly be truncated to be able to 
represent the finite volume of even the largest hydrocarbon accumulation. The 
shape of the left tail, however, reflects both the creaming effect as well as 
economic truncation. Increases in hydrocarbon prices may shift the point of 
economic truncation to the left, so previously uneconomic discoveries may be 
placed into production. Most of the remaining undiscovered economic potential of 
mature assessment regions may lie in economically sub-marginal accumulations. 
The distribution of possible sizes of undiscovered accumulations that exist in a 
proven play is conditional upon the underlying finite parent population of 
accumulation sizes and the creaming effect of the discovery process that can be 
regarded as the result of biased sampling without replacement of the 
accumulations in the play. 
 

  
Fig. 1 Left shifting of accumulation size distribution f(S0) to f(S1) and of cost truncation point S0 
to S1 on the parent population, due to price rise. (Drew,L.J.,1997). 
 
 
There are several ways of estimating the parent accumulation size distribution. 
One common way, when the play under consideration has data on the sizes of the 
discovered accumulations, is by defining the accumulation size distribution from 
the frequency distribution of the sizes of the discovered accumulations in the play. 
This is feasible only when the sample size of accumulation sizes is sufficient 
enough, so that the shape of the frequency distribution can be taken to ‘mimic’ at 
least ‘some part’ of the shape of the parent population. Many critical issues are 
related to the empirical frequency distributions and the problems faced in 
defining the shape of the parent populations. In particular, left truncation in the 
empirical distribution related to the economics of hydrocarbon exploration and 
left shifting of the mode of the distribution due to the creaming effect of the 
discovery process (fig.1). After this introductory statements let us clarify some 



definitions and concepts. The hydrocarbon resource endowment refers to the 
natural occurrence of hydrocarbon accumulations within a given assessment 
volume and is conceptually purely physical and is not dependent upon 
technology and economics. Resources refer to hydrocarbons contained in 
accumulations, which, if they were discovered, could be technically and 
economically produced today or in the near future. Hence resources are a function 
of the original endowment, economics and technology. The resource base is 
intermediate to the endowment and reserves and refers to the totality of 

hydrocarbons in accumulations equal or larger than the smallest accumulation size 
(Resource Base Minimum (RBM) included in the assessment.  
Exploration can be represented as a sampling process that both is size biased 
(creamed) and truncated.  One can in cases where this representation is 
appropriate obtain an unbiased estimate of the resource base population (parent 
population) parameters by correcting for the bias (un-creaming).This can be 
achieved by explicitly modeling the relation between the sample parameters and 
the population parameters considering the lower truncation (a) at the resource 
base minimum (RBM) size and the upper truncation (b) at the ܽ  ݔ  ܾ resource 
base maximum.                         
Traditionally lognormal, [1], or Pareto models [3 have been chosen to represent 
the accumulation size distributions. Beta distributions have been used for 
modeling input parameters in reserve and resource estimation [4]. In this 
extended abstract an alternative use of the Beta distribution is presented that have 
many desirable properties useful for predicting undiscovered sizes in a play. 
Let x be the size of a hydrocarbon accumulation. Suppose that X = Beta (p,q,a,b) 
represent the four-parameter beta pdf for x as ݂ሺݔ, , ,ݍ ܽ, ܾሻ where the parameter 
p controls the lower tail and the parameter q the upper tail . Considering that the 
probability for x to be discovered is proportional to xd   provided that ܽ  ݔ  ܾ    
where a is the lower and b is the upper truncation size then the pdf for discoveries
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is related to the pdf for the accumulation size of the resource 
base  in the following way:  
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              The implication is that if the largest accumulations that represent all 
accumulation sizes larger than a given threshold that are present in the 
assessment area have been discovered then an estimate of (q) by these discoveries 
should be equal to the (q) of the un-creamed parent resource base distribution. We 
are therefore, when it is reasonable to assume that the assessment area is 
sufficiently explored so that all accumulations above a known size x* have been 
discovered, left with the estimation of p and d.  The existence of both high and 
small sizes in the start of the discovery sequence may reflect a contaminated 
distribution with a d= 0 interacting with a larger creaming factor for d. Estimating 
this contamination jointly with the estimation of p and d is proposed to represent 
a desirable strategy for approaching a permissible model for the parent 
distribution. 
The abstract is organized as follows: In Section 2 we introduce biased sampling 
and its relation to discovery creaming; in Section 3 we discuss GOM field size 
distribution. In Section 4 we show the results of simulating discoveries analogue 
to the GOM fields. Finally, in Section 5 we discuss results and present conclusions. 
 
 

 



2 Biased sampling: Discovery creaming  
 

Given undiscovered oil accumulations in the ground with magnitudes that, varies 
according to an assumed distribution.  Over time some of the accumulations are 
drilled and the resources found are recorded, and used to confirm or establish the 
characteristics of this distribution, say mean, median and mode. However, the 
sampling is scarce, and the most promising accumulations are likely to be drilled 
first, based on some geologic indicators (“creaming”). This will give a biased view 
of the underlying distribution.  The distribution will typically be skewed with a 
long right tail, and the popular lognormal distribution is frequently used to 
represent the variation. In order to analyze the consequences of creaming, it may 
as proposed by [6] be illuminating to consider PPS- sampling, i.e. sampling with 
probabilities proportional to (expected) size. Distributions with an unrestricted 
right tail, like the lognormal, do not allow this, and the problem will instead be 
studied within the class of Beta-distribution. Although this is a distribution over 
the interval [0,1], it can be scaled to any interval [a, b}, and it accommodates skew 
distributions, which in small and moderate samples turn out to be 
indistinguishable from the log-normal as shown in figure 2. 

 
Fig. 2 Lognormal Probability Plot of 100 simulated Beta(1,867,8.816) with 95% Confidence interval 
 
 
The Beta(p,q) density fሺxሻ is proportional to   x୮ିଵሺ1 െ xሻ୯ିଵ   0 ൏ x ൏ 1  
The parameters p>0 and q>0 determines the shape of the distribution. 

 
If X=x is sampled with probability proportional to x, then the sampled X becomes 
Beta (p+1,q) instead of Beta (p,q). Similarily if the sampling is with probabilities 
proportional to any power xd of x then sampling will appear as coming from a 
Beta (p+d,q) distribution instead of the true Beta (p,q). How much one should 
degrade the computed “p”=p+d in order to get at the “true” p depends on how 
efficient the explorers go after the large expected deposits. This may be decreasing 
as time goes by, so that it is natural to expect that d depends on the current p. If 
the true p is estimated by a fraction of p+d, say by f·(p+d) then as p decreases, so 
will d and we have a dependency that reflects the expected exploration efficiency. 
 

3 Gulf of Mexico fields 
 

 
Some empirical results from a real exploration process may reveal patterns that 
might turn useful for prognostic purposes. Field sizes collected by the Mineral 
Management Service (MMS) from a mature exploration area of the U.S. Gulf of 
Mexico (GOM) Shelf up to 2002 representing “Proved” reserves totaling N=982 
observations are shown in the histogram in figure 3. We see an abundance of small 
sizes and a few large outlying ones. The sizes range from close to 0 to less than 800 



MMbbls o.e., and were rescaled accordingly to [0,1].  The scaled sizes in the actual 
order revealed and recorded are given in the time series plot on the right in fig.3. We 
see a pattern that is not consistent with i.i.d. random sampling, but a pattern 
declining over time and some a large number of small sizes even in the beginning of 
the sequence. An obvious advantage of assuming a Beta distributed parent 
population is that the effect of creaming is summed up in the single parameter p and 
it is therefore interesting to explore the possibility to keep the model framework at 
this simple level. As basis for this we may look at some empirics from the data: 

 
Fig. 2 Histogram and discovery sequence of GOM shelf fields MOEB (millions barrels oil 
equivalents). 
 Let us consider the range of GOM field sizes divided into four time segments 
Q1, Q2, Q3 and Q4 of about equal size, here with number of observations 245, 245, 
245 and 247 respectively. 
  
Table 1 Empirics for the first 4 time segments of the GOM field sizes basin.  

 
 
The computation of distribution parameters based on enlarged segments is shown in 
table 1. We see that the “p” decreases steadily and q increases slightly, and rapidly 
stabilizes after the first period, consistent with p mainly affecting the left tail and q 
the right tail. After the big fields are sampled, we do not expect much to happen in 
the right tail, but changes are still expected in the left tail. If we do the encompassing 
computation sequentially and plot the resulting p+d and q as function of the number 
of observations (omitting the first 25 values which are very erratic due to few 
observations) we get the plots in fig. 4. A decline in p+d with n, and an apparent 
asymptotic behavior in q can be observed. The tail behavior of p+d appears slightly 
convex, but not far from linear. As n goes to infinity we essentially get the sizes of the 
parent distribution, but we get them in an order not consistent with independent 
sampling (not even independent with probabilities proportional to size). A possible 
context is therefore: The geological processes which have distributed field sizes in the 
subsurface above a minimum size represents a random sample of N from a 
continuous parent distribution, here assumed a rescaled Beta. What really is 
observed is a discovery sequence in an order related to the size of each field. A way 
of exploring this context is to simulate randomly from Beta(p,q)  and then order the 
observations according to size, or some principle related to magnitude, and then see 
how successive encompassing calculations reflect the observed (tail) behavior.  
 



 
 

Fig. 2 Time series plot of p+d and q  
 
 

4 Simulated Discoveries  
 
1000 independent Beta(0.5,2.5) are generated to constitute a population from which  
the 1000 potential discoveries are selected without replacement, one at a time, with 
probabilities proportional to xd among the remaining hydrocarbon accumulations. 
 

  
 

Fig. 1 Simulation plots for d=0 (top left), for d=0.5 (top right), d=1 (bottom left) and d=2 (bottom 
right): 
 
The result shown in figure 5 have features common with the corresponding plot for 
the real GOM data in fig. 3. However, there are some differences. The existence of 
both high and small sizes for some time is more consistent d=1, but in this plot tails 
off too slowly. On the other hand d=2 tails off more consistent with the real case, but 
lacks the small sizes in the beginning.  For the real GOM data we have both high and 
low ones for some time. This may reflect special features of the exploration process, 
among them that seismic provide better control of the large fields, in the sense that it 
is not that easy to avoid the small discoveries as it is to find the large ones. 
Appearance of new information and practical reasons may also affect the process. A 
realistic model of this kind may therefore be represented by a mixture between d=0.5 
and d=2 that would give a pattern close to the one observed, while a single creaming 
factor d=1 represents a compromise. 
It is of interest to see how successive computations of the Beta-parameters differ in 
the four cases d=0, 0.5, 1, 2.  



 
4.1 Discovery as a mixture of two exploration processes  

Simulated drawings from the same population of 1000 has been generated from 
Beta(0.5,2.5) as in the previous simulation. The drawings are according to the same 
scheme, but each item is sampled according to d=0 or 1 with probabilities (1-r, r) for 
r=0.3, 0.5, 0.7. This results in the following plots shown in fig. 6. For the p- parameter 
we observe the same downward slope as for d=1 previously. For the q-parameter we 
have an upward slope for r=0.3, tailing off asymptotically for r=0.5, and still a peak 
late in the sample process for r=0.9. 
 

 
 
Fig. 6 Estimated p and q (top), discovery sequences (bottom)In the plots the first 10 calculated 
values are omitted, in order to get higher resolution that otherwise would have been spoiled by 
high and erratic values. 

 
The pattern most consistent with the plots for the real GOM discovery process of is 
for r=0.5. An estimate for r can be derived from the exploration success rate and the 
creaming factor. The graphs of the simulated sampling process is given here for r=0.5 
and r=0.7. We see a slight difference in how it tapers off at the end, linearly for r=0.5 
and exponential for r=0.7. This feature is supported by repeated simulations. The 
main difference is that the real discovery sequence has both high and small sizes in 
the beginning, more uniformly up to a midway in the exploration process, where we 
have a major drop to uniformly small sizes and not the kind of tapering off as in the 
graphs below.  The sampling process for the real GOM data in section 3 seems to be 
more consistent with a mixture between d=0 and d>1 (say 2) until the large sizes are 
almost depleted, from which time the remaining discovered sizes occur more 
randomly. 
 
4.2 Time until largest discovery and population size 

The context is as before, a population of N field sizes given as a random sample from 
a scaled Beta parent distribution.   There are several ways of reasoning, and one 
possibility is to focus on the maximum size observed in the sampling process, and 
utilize that the expected time before discovering the largest field will be dependent 
on N. By observing the time of the maximum it should be possible to project N. This 
may work since within any size based sampling scheme, we are fairly sure that we 
observe the maximum in a reasonable time compared to the size of the population.  It 
seems hard to develop analytic formulas, and we will resort to simulations in order 
to establish the relationship. Beta(0.5,2.5) is used as a model for the parent  



superpopulation and successively subsidiary populations of size N= 10, 20, 30, …, 
1000 are simulated. From each of these subpopulations hypothetical discoveries are 
drawn according to the mixture proportional to size scheme (d=0,d=1) with 
probabilities (0.5, 0.5) for  r =0.0, 0.1, 0.2, …,0,9, 1.0. For each simulation the waiting 
time for the maximum discovery is we observed. The average ݊max of the observed 
waiting times for the maximum was taken as an estimate of the expected waiting 
time calculated from 100 repetitions of each combination of parameters. The plot in 
fig. 7 of N versus ݊max for the case d=1 and r=0.5, have a clear linear structure. 
 

 
Fig. 7 N versus ݊max ( left) and c( r ) versus r (right). 
 
Simulation is then repeated for (0,d) with probabilities (1-r, r) for  r =0.0, 0.1, 0.2, 
…,0,9, 1.0, in the case of d=1 and d=2, all showing a similar linear structure with 
c(0)=2 and increasing slopes. This suggests the projection formula  N=c݊max where, 
for each r, we may compute c=c(r) from regressing N on ݊max as shown in the right 
side of the plot in figure 7.  The waiting time for the maximum for a given N may be 
far off the expectation line in a single application (fig.8). Consequently the projection 
of N, could be far off if an individual ݊max value is used as a basis for projection 
unless constrained by auxiliary information. 
 

 
Fig. 8 Histogram of projected values for N 
  

 
5 Simulations and conclusions 
 
Simulations for a specific parent population, and assumed specific proportional to 
size mixture sampling scheme (0,d) for d=1,2has shown that the projection factor for 
estimating the population size N is heavily dependent on r the mixing probability.   
The effect of simultaneous varying r, p and q is under study. The simulation match 
fairly well with the real exploration sequence observed from the GOM shelf, and has 
by this permitted to explore some of the challenges of extrapolating discovery 
sequences. We may face a quite different discovery pattern in another exploration 
play, and will have to learn as we go along, and simultaneous being asked to make 



projections before we really know how the exploration sequence behaves. However, 
there is some hope that before the play reaches half maturity sufficient insight is 
acquired to make an educated guess about the number and sizes of remaining 
discoveries. An advantage of using a Beta distributed parent population is that the 
creaming bias is represented by a single parameter that can be estimated from the 
discovery sequence and subsequently used for an unbiased estimation of the parent 
population that potentially can incorporate a larger number of small fields than the 
lognormal distribution, and thus may significantly impact play economics.  
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