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Abstract We formulate a multi-grid Markov mesh model for geological facies mod-
eling. A hierarchy of nested grids is defined, as well as a Markov mesh model for
each grid, but such that it takes into account information also from coarser grids.
The result is what we denote a multi-grid Markov mesh model. The framework of
generalized linear models and systematic grid specification enable fast parameter
estimation. The estimation is done once per grid level. During simulation the coarse
patterns are first laid out, and by simulating increasingly finer grids we are able to
create patterns at different scales. We apply the method to several tests cases. For
each considered training image, the simulation results are quantitatively evaluated
by comparing the distribution of the up-scaled permeability tensor of the generated
realizations to the permeability tensor of the training image. Also distributions for
facies volume fractions are evaluated. We also compare the results of the multi-grid
Markov mesh model against the results of a commercially available Snesim algo-
rithm.
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1 Introduction

The spatial distribution of facies is a crucial part of any reservoir model, since
it is often one of the main sources of variability in flow [5]. Multi-point statis-
tics is one class of methods for geological facies modeling, proposed nearly two
decades ago [3], and it has developed along two main paths: the statistical model ap-
proach [9] and the algorithmic approach [8]. Common to many multi-point methods
is the use of a training image that represents the geologic patterns typically found in
the reservoir of study. The multi-point methods aim at reproducing the essential as-
pects of these patterns, but with a variability that can be adapted to the case at hand.
When trying to reproduce the patterns, algorithmic multi-point methods tend to pro-
duce artifacts in the simulations. This is due to lacking patterns in the training image.
Statistical models on the other hand, can interpolate between observed patterns to
compute the probability of patterns that are not explicitly present in the training
image, and hence artifacts are reduced. With the introduction of Markov mesh mod-
els [6], the statistical approach also overcame its original time-consumption prob-
lems in parameter estimation and simulation. In this paper we precede yet another
step, and formulate a multi-grid Markov mesh model.

The use of multiple grids has previously been used in the algorithmic approach
to multi-point methods [7]. The strategy has proved invaluable for capturing pat-
terns at different scales, but without overcoming all the problems of artifacts due to
lacking training image patterns. With a multi-grid Markov mesh model we combine
an advantage originally developed for algorithmic methods — the use of multiple
grids, with the consistency and flexibility of the statistical methods.

Markov mesh models are a sub-class of Markov random fields [9] defined
through a unilateral path [2]. In [6] the authors propose to model facies geometries
through a single-grid Markov mesh model defined using the framework of general-
ized linear models [4, 1]. In this paper a hierarchy of grids is defined, and a Markov
mesh model analogous to those of [6] is defined for each grid, but such that it takes
into account information also from coarser grids. The result is what we denote a
multi-grid Markov mesh model. The framework of generalized linear models and
systematic grid specification enable fast parameter estimation. The estimation is
done once per grid level. During simulation the coarse patterns are first laid out,
and by simulating increasingly finer grids we are able to create patterns at different
scales.

We present several 3D examples, illustrating that the multi-grid Markov mesh
model can be successfully applied for a range of training images. For each consid-
ered training image, the simulation results are quantitatively evaluated by comparing
the up-scaled permeability tensor of the generated realizations to the permeability
tensor of the training image. Also distributions for facies volume fractions are eval-
uated. The model’s ability to reproduce the geological patterns of the training image
is evaluated by visual inspection.
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2 Multi-grid Markov mesh model

Multi-grid Markov mesh models are defined by a hierarchy of grids, a unilateral
path per grid level, and a conditional probability for each cell value given the cell
values in a sequential neighborhood. Mathematically, the multi-grid Markov mesh
model is nothing but a single-grid Markov mesh model where the cells are visited
according to the overall path, and the sequential neighborhood for any cell consists
only of cells from the past part of this path. It is nevertheless useful to explicitly
discuss the model in terms of the multiple grid levels, since it is systematic model
specification in terms of these levels that makes it an efficient and useful tool for
capturing patterns at several different scales. For the reader’s convenience we start
with a small reminder of the single-grid Markov mesh model, then illustrate the idea
that multiple grids allows the sequential neighborhood to capture patterns at many
different scales, and finally we formulate the multi-grid Markov mesh model itself.

2.1 The single-grid model

Single-grid Markov mesh models are defined by a unilateral path and a condi-
tional probability for each cell value given the cell values in a sequential neigh-
borhood. Consider a finite, regular grid G in two or more dimensions, and let the
one-dimensional index i label the cells of the grid. The set of all cells is {1,2, ...,N}.
For the single-grid Markov mesh models this is also the order in which cells are vis-
ited during simulation. For each cell i we let the cell value xi represent the facies of
the cell. Assuming that the conditional probability for facies at cell i depends only
on a subset Γi of all cells j < i, we can write this probability as

π(xi|x j<i) = π(xi|xΓi), (1)

where xΓi is the set of facies values for the cells in the sequential neighborhood.
Eq. 1 expresses the Markov property of the model. Figure 1 gives an illustration of a
sequential neighborhood on a two dimensional grid. The single-grid Markov mesh

Fig. 1 Illustration of sequential neighborhood. A snapshot of a simulation is displayed, and the
grey cells have not yet been simulated.
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model is fully specified through the conditional probabilities in Eq. 1, i.e. the joint
probability is

π(x1,x2, ...,xN) =
N

∏
i=1

π(xi|xΓi). (2)

Simulation from the Markov mesh model is performed by following the path
i = 1,2, ...,N throughout the grid. For each cell the facies value is drawn according
to the conditional probability π(xi|xΓi). Each cell is visited once, and the resulting
grid configuration follows the joint probability distribution in Eq. 2.

2.2 Capturing large scale patterns

The main purpose of using a multi-grid formulation is to be able to detect and re-
produce also patterns at a large scale with a relatively small neighborhood. Fig-
ure 2 illustrates how this works for a simple 2-dimensional example. The left figure
pane shows the sequential neighborhood Γi of a reference cell i on the grid G . The
right figure pane shows the analogous neighborhood, but applied to the coarser grid
level l. The grid Gl consists of each 2nd and each 4th cell of G , in the horizontal
and vertical direction, respectively. Relative to the grids G and Gl , respectively, the
neighborhoods of the left and right figure pane are identical. But measured in terms
of cells on the finest grid, i.e. cells on G , the neighborhood reaches much farther
when applied to the coarse than to the fine grid. It is this property, that a neighbor-
hood consisting of few cells can reach far in space if applied to a coarse grid, that is
used in the multi-grid formulation of the Markov mesh model. It makes it possible to
capture patterns even on large scales while retaining a model that is computationally
efficient.

Fig. 2 Left: a sequential neighborhood. Right: the same sequential neighborhood, but on a coarser
grid.
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2.3 Defining the multi-grid Markov mesh model

We are now ready to present the formulation of the multi-grid Markov mesh model.
Consider again a finite, regular grid G in two or more dimensions, with the one-
dimensional index i labelling the cells of the grid. The set of all cells is {1,2, ...,N}.
We define a sequence of regular grids G1,G2, ...,GL, each grid being a subset of G ,
such that

G1 ⊂ G2 ⊂ G3...⊂ GL, and GL = G . (3)

We will refer to Gl as the grid on level l, with the coarsest grid level being for l = 1
and the finest for l = L. Define furthermore the disjoint sets H1,H2, ...,HL by

H1 = G1, and Hl = Gl \Gl−1, l = 2,3, ...,L. (4)

The set Hl consists of the cells of Gl that are not on any of the coarser grid levels.
Figure 3 gives an example of how a 2-dimensional grid G can be described in terms
of five grid levels.

Fig. 3 A hierarchy of grids, displayed as subsets of the set of cells of the finest grid G .

For each set Hl let s(l) denote the number of cells in Hl , and let pl be the ordered
version of the set of cells on Hl :

pl = (i1, i2, ..., is(l)), where (5)
i1, i2, ..., is(l) ∈Hl , and
iq < ir if q < r.

Here iq,∀q ∈ {1,2, ...,s(l)} is the original one-dimensional cell index. The last con-
dition says the cells on Hl are ordered with increasing 1D-index. But be aware that
pl consists only of cells that are on Hl . The ordered set pl is the unilateral path for
grid level l. The total path of the multi-grid Markov-mesh model is defined to be the
concatenation of the level-wise paths:
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p = (p1, p2, ..., pL). (6)

The right hand side of Figure 4 shows the order of visiting the cells in a 2D grid,
given that the 1D cell indices are as shown in the left-most figure pane, and the
grid sequence is as in the example of Figure 3. For given one-dimensional indices,
a different grid sequence would imply a different total path.

Fig. 4 Left: One-dimensional cell index. Right: Path order of cells, given the grid sequence of
Figure 3.

Since the sets Hl are disjoint and their union equals G , for each grid cell i, there
exists a unique grid level l such that i ∈Hl and i /∈Hk if k 6= l. We write l(i) for
this mapping from cell index to grid level, i.e. i ∈Hl(i). Given that we follow the
path p, all cells that are listed before cell i are given by the set

Wi = {k|k ∈ Gl(i)−1∪Pi}N
k=1, (7)

where
Pi = { j| j ∈Hl(i), j < i}N

j=1. (8)

That is, any cell listed before cell i either belongs to a coarser grid, or is listed before
cell i in the unilateral path pl(i) for the grid level associated with i.

For each cell i we let the cell value xi represent the facies of the cell. The joint
probability distribution can always be written as

π(x1,x2, ...,xN) =
L

∏
l=1

∏
i∈pl

π(xi|xWi), (9)

since this only amounts to a reordering of the grid cells on the left hand side of the
expression, followed by repeated use of the general relation π(A,B) = π(A|B)π(B).
Eq. 9 shows how the joint probability distribution of all cells can be expressed in
terms of a systematic grid refinement, where the conditional probability π(xi|xWi)
depends only on cells from the present or coarser grid levels, never on cells from
finer grid levels.
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Now we introduce the Markov condition: we assume that the conditional proba-
bility for facies at cell i depends only on a certain subset of the cells from earlier in
the path, i.e. we assume that there exists a Γi ⊂Wi such that

π(xi|xWi) = π(xi|xΓi). (10)

Then the joint probability can be written

π(x1,x2, ...,xN) =
L

∏
l=1

∏
i∈pl

π(xi|xΓi). (11)

The set Γi is denoted the sequential neighborhood of cell i. It consists of cells from
the coarser grids and cells that are listed before cell i on the path pl . Eq. 11 is a
multi-grid Markov mesh model. It is fully specified by the sequence of grid levels
and the conditional probabilities π(xi|xΓi). Simulation from the model is carried out
by starting at the coarsest grid level, then using increasingly finer grids. At each grid
level the unilateral path pl is followed, and for each cell the facies value is drawn
according to the conditional probability π(xi|xΓi). Each cell is visited once, and the
resulting grid configuration follows the joint probability distribution in Eq. 11.

3 Model specification

The statistical model is defined by specifying the path and parameterizing the con-
ditional probabilities in Eq. 10. The path is uniquely determined by the sequence
of grids. The statistical model specification is based on generalized linear models
(GLMs) [4]. Our model specification aims at ensuring efficient parameter estima-
tion and providing good simulation results for a range of training images.

3.1 Specifying the sequential neighborhood

The multi-grid sequential neighborhood is a generalization of the sequential neigh-
borhood of the single-grid Markov mesh formulation, the latter being illustrated on
the left hand side of Figure 2. The generalization consists of including in the neigh-
borhood cells with a higher 1D-index, provided they belong to the past path of the
reference cell. We illustrate this with an example in Figure 5, where the 1D-indices
and path of Figure 4 are reused. The figure gives an example of the sequential neigh-
borhood Γ42. In the example the sequential neighborhood has a maximal extension
of two cells in each direction from the reference cell. Now, cell 42 is ordered as
number 64 in the path, as indicated in the right hand figure pane. The sequential
neighborhood includes only cells with a lower path order number, but as shown by
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the left hand figure pane, some of the cells have a 1D-index larger than 42: cells 43,
50, 52, 59, and 61 in this example.

Our specification of the sequential neighborhood consists of, for each grid level
specifying its maximal extension in different directions, and then include all cells
inside these limits provided they belong to the past path. Since each grid G is a reg-
ular grid, assuming the 1D-indexing is also regular, all cells i∈Hl are then assigned
sequential neighborhoods of exactly the same shape. This is important for the effi-
ciency of the model. For a sequential neighborhood bounded by a rectangular box,
six parameters are sufficient for parametrization; if the box is assumed symmetric
around the reference cell, three parameters nx,ny,nz suffice. The parameters then
typically describe the maximum number of cells in either direction of the reference
cell.

Fig. 5 Example of sequential neighborhood Γ42. Left pane: 1D cell indices; Right pane: order of
cells in the path.

Figure 6 illustrates a symmetrically bounded sequential neighborhood in 3D by
displaying four z-layers for a given grid Gl . Only cells on grid Gl are shown, not for
any finer grid levels. It is assumed that nx = ny = 3 and nz = 2, and that the 1D cell
index loops first over the x-direction, then the y-direction, and last the z-direction.
Three different cases are shown: In Case 1 it is assumed that grid Gl is related to
the coarser grid Gl−1 by a refinement in the z-direction. By this we mean that if
grid Gl−1 consists of each 2kx , 2ky , 2kz cells of the finest grid G , then Gl consists of
each 2kx , 2ky , 2kz−1 cells. In Case 2 the refinement was done in the y-direction, and
in Case 3 the refinement was done in the x-direction. The figure illustrates how the
sequential neighborhood depends on the grid sequence.

3.2 Using the framework of generalized linear models

The use of GLMs for specifying Markov mesh models for facies modeling was first
suggested in [6]. The idea in GLM is that the distribution of a response variable
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Fig. 6 The sequential neighborhood for each of three grid refinement cases, provided the neigh-
borhood’s maximal extension is nx = ny = 3 and nz = 2. The sequential neighborhood consists of
the cells in the past path.

depends on a linear combination of explanatory variables through a non-linear link
function. We let the facies xi be the response variable, and the explanatory variables
be functions of the sequential neighborhood Γi.

Consider a given grid level l and let the cell i be on this grid level, i.e. i∈Hl . Let
zi be a Pl-dimensional vector of explanatory variables with elements that are func-
tions of cells from the sequential neighborhood Γi. We propose particular functions
below, but for now simply write zi j = f j(xΓi) for j ∈ {1,2, ...,Pl}. The same set of
Pl functions is used for any neighborhood Γi if i ∈Hl . The value f j(xΓi) varies with
i, since it depends on the facies configuration in the neighborhood Γi. For each grid
level l there is one model parameter per neighborhood function per facies value.
Assuming there are K different facies values, we let the K vectors θ 1

l , ...,θ
K
l hold

the parameters. Each vector is Pl-dimensional.
We encode the cell value xi ∈ {1,2, ...,K} with binary variables xk

i such that

xk
i =

{
1 if xi = k ,
0 otherwise. (12)

The conditional probability in Eq. 10 is then

π(xi|Γi) = π(xi|zi,θ
1
l(i), ...,θ

K
l(i)) =

∏
K
k1=1 exp

{
xk1

i zT
i θ

k1
l(i)

}
∑

K
k2=1 exp{zT

i θ
k2
l(i)}

, (13)

and the joint probability in Eq. 11 is
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π(x1,x2, ...,xN) =
L

∏
l=1

∏
i∈pl

∏
K
k1=1 exp

{
xk1

i zT
i θ

k1
l

}
∑

K
k2=1 exp{zT

i θ
k2
l }

. (14)

Here pl is the path on grid level l. Interpreted as a likelihood for the model parame-
ters Eq. 14 is a GLM for each grid level. The maximum likelihood estimation of the
parameters in the multi-grid Markov mesh formulation can therefore be solved with
the iterative weighted least squares scheme. Parameter estimation is for a single-grid
Markov mesh model discussed in [6], and their methods can be directly applied to
each grid level of our multi-grid approach.

3.3 Neighborhood functions

As noticed by [6], the challenge with multi-point statistics is that there generally are
too many possible patterns. A finite training image does not hold information about
all possibilities, and computationally it is impossible to handle them all anyway.
To come around this problem we extract a subset of properties, represented by the
neighborhood functions, that we believe are important in order to reproduce geo-
logical structures. We do not expect our subset to be suited for all possible training
images, but nevertheless aim at making robust choices. It is possible to achieve other
characteristics by adding or removing neighborhood functions, while retaining the
GLM formulation of a multi-grid Markov mesh model.

Our specification of the neighborhood functions is similar to the specification
of [6] in the sense that the 3D model consists of combining three 2D models, one
for each of three orthogonal grid slices intersecting at the reference cell, adding a
few off-2D extensions; and we focus on two point interactions, multi-point interac-
tions representing continuity and transitions of facies, and multi-point interactions
representing all possible patterns for a very limited number of cells.

It differs from the specification of [6] in the sense that we take into account also
functions for cells with a higher 1D index than the reference cell, provided they are
part of the multi-grid sequential neighborhood.

3.3.1 Two-dimensional specification

For each 2D grid slice of the sequential neighborhood of the reference cell i, the
2D two-point interactions are restricted to a subset of the slice in question. For each
cell j of this subset, indicator functions f k(x j) are included, one for each facies
k ∈ {1,2, ...,K}. The functions are defined by

f k(x j) =

{
1 if x j = k ,
0 otherwise. (15)
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This gives one function per facies per two-point interaction cell, with one model
parameter per function.

For each 2D grid slice, the multi-point functions representing connectivity and
transition of facies are also represented by indicator functions. Each function is
defined relative to a certain set of cells. Let γ

l−1
i be a set of l − 1 neighbors of

the reference cell i, corresponding to an l-point interaction term [6]. The indicator
function f k(x

γ
l−1
i

) is then defined by

f k(x
γ

l−1
i

) =

{
1 if x j = k,∀ j ∈ γ

l−1
i ,

0 otherwise.
(16)

The sets γ
l−1
i are defined by considering strips of cells in the horizontal, vertical

and diagonal directions of the 2D slice. See [6] for a more detailed presentation on
this. Input parameters can be used to define the maximal length of the strips, and
how many strips to use. More and longer strips imply more indicator functions, and
hence more model parameters.

Indicator functions are also used for the multi-point interactions representing all
possible patterns for a very limited number of cells in the 2D grid slice. There is one
function per facies per pattern of the neighboring cells, resulting in Kn functions if
n−1 neighbors participate to this kind of multi-point interaction.

3.3.2 Three-dimensional specification

The 3D model is defined by using the combined set of indicator functions from the
three 2D grid slices. We also include strips in the off-2D diagonal directions of each
of the eight octants centered around the reference cell i, using only the octant cells
that are part of the multi-grid sequential neighborhood. This is analogous to the
specification of [6]. The resulting number of functions for the 3D model is denoted
Pl , where l labels the grid level.

The set of neighborhood functions generally differs across the grid levels, but
for a given level l the same set of Pl functions is used for all cells i ∈Hl . Figure 7
illustrates some of the 2D neighborhood functions for the case of a grid Gl that
is assumed related to grid Gl−1 by a refinement in the y-direction (second row of
Figure 6). Only the z-plane of the reference cell is shown in Figure 7. The left
column of the figure illustrates functions that would have been used if the sequential
neighborhood were identical to its symmetrical bounding box; the rightmost column
illustrates what the actual neighborhood functions look like after the form of the
sequential neighborhood for this grid level is taken into account; and the middle
column illustrates the filtering that takes us from the general functions of the left
column to the grid level specific functions of the right.
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Fig. 7 A 2D example of how general pattern recognition functions are modified by the sequential
neighborhood to form the grid specific neighborhood functions. The arrows indicate the directions
and in which order the number of interaction terms increases.

3.4 Grid refinement

The model of Eq. 14 is partly specified by the choice of explanatory variables
(neighborhood functions), partly by the choice of the multi-grid path. In our formu-
lation the path is uniquely determined by the choice of multi-grid sequence, given
the 1D indices for the grid cells. For a given training image, two different grid se-
quences will represent two models, and hence give different simulation results. No
single grid sequence works equally well for all training images.

For determining the coarsest grid G1 we suggest using the idea that when using
a coarse grid, it is possible to capture large scale patterns even if the neighborhood
consists of a rather limited number of cells (Figure 2). Our solution consists of
estimating the TI’s correlation ranges, then choosing the coarsest grid such that
a user specified neighborhood, when applied to this grid, reaches just beyond the
maximal correlation ranges in each direction.

For the subsequent grid sequence, our best results have been achieved when re-
fining the grid in one direction at the time. That is, any grid Gl is related to the
previous level’s grid, Gl−1 by a refinement of the x–, y–, or z-direction, but never
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by a combination of the three. We suggest to use the estimated TI correlations also
for determining this grid sequence, thus tailor-making the sequence to the training
image in question. By using the refinement direction for which the estimated cor-
relations are weakest, the simulation algorithm is given maximal freedom to lay
out a variety of patterns at each grid level. This ensures statistical variability in the
simulation results.

4 Examples

This section presents results obtained by using the multi-grid Markov mesh model.
We consider four different 3D training images, three with two facies classes, one
with three facies classes. For each training image we study the conceptual geology,
the effective permeability, and the facies volume fractions. We provide a comparison
between the results of the multi-grid Markov mesh model and the algorithmically
driven, multi-grid, Snesim approach ([8], [7]). The latter is obtained through running
the multipoint module of a commercial software.

For each training image we have simulated 100 realizations with the multi-grid
Markov mesh model, and 100 realizations with the Snesim algorithm. Each realiza-
tion was subsequently run through an algorithm that computes the effective perme-
ability of the realization volume. The effective permeability is calculated also for the
training image. The statistical distribution for the realizations’ effective permeabil-
ity tensor can then be compared directly to the effective permeability of the train-
ing image. For each realization we also compute the facies volume fractions, and
compare the statistical distributions to the volume fractions of the training image.
Statistical distributions for effective permeability and volume fractions is obtained
separately for the multi-grid Markov mesh model and for the Snesim approach, one
distribution per training image. Each distribution is based on 100 realizations.

Conceptual geology is assessed by visual inspection. We here present the results
of one simulated multi-grid Markov mesh realization and one Snesim realization
per training image. For each training image the shown realization is representative
for the set obtained.

4.1 Conceptual geology

For each of four different training images, Figures 8, 9, 10, and 11 compare the con-
ceptual geology of a multi-grid Markov mesh realizations and a Snesim realizations
to the training image. Each of the four figures show the training image to the left,
a realization obtained by the multi-grid Markov mesh model in the middle, and a
realization obtained by the Snesim algorithm to the right. The training images rep-
resent, respectively, a turbidite system (Figure 8); a channels system where the main
correlations are not along the main axis of the simulation box, but rather along the
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x,y-diagonal, and where the channels are somewhat narrow and irregular (Figure 9);
a system of irregular channels with crevasses (Figure 10); and a system of regular
channels with fairly low sinuosity (Figure 11).

The simulated realizations clearly illustrate that the multi-grid Markov mesh
model easily reproduces main aspects of the training image, such as correlation di-
rections and body shapes. There is in general no major difference between the visual
appearance of the multi-grid Markov mesh realizations (middle) and the realizations
obtained by the multi-grid Snesim approach (right).

Fig. 8 Conceptual geology, turbidite case. Training image: left, multi-grid Markov mesh model:
middle, Snesim algorithm: right.

Fig. 9 Conceptual geology, azimuth channels case. Training image: left, multi-grid Markov mesh
model: middle, Snesim algorithm: right.

4.2 Effective permeability

Figures 12 and 13 display the effective permeability tensors for the whole volume
of the realizations and training image. The tensors are in general symmetric, 3-
dimensional tensors of second order. We include here only the diagonal elements,
representing permeability in the xx-, yy-, and zz-direction. With respect to evaluating
the multi-grid Markov mesh model to the training image and the Snesim algorithm,
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Fig. 10 Conceptual geology, channel crevasse case. Training image: left, multi-grid Markov mesh
model: middle, Snesim algorithm: right.

Fig. 11 Conceptual geology, isolated channels case. Training image: left, multi-grid Markov mesh
model: middle, Snesim algorithm: right.

the results of the off-diagonal elements provide no further insight, and are hence
omitted here. For each training image, the results for the multi-grid Markov mesh
model are displayed in the top row, and the results for the Snesim algorithm are
displayed in the bottom row. For each tensor component, the probability distribu-
tions obtained from simulations are shown in blue, while the red line indicates the
corresponding permeability of the training image.

For the turbidite case (left figure pane, Figure 12) both the multi-grid Markov
mesh model and the Snesim algorithm reproduce the training image’s permeability
tensor very well; the red line is well inside the distributions, often corresponding to
the mean of each distribution. There is a small exception for the Snesim approach’s
zz-permeability, but the percent-wise deviation between the training image perme-
ability and the mean Snesim permeability is tiny. With more statistics (more simu-
lated realizations) the width of the distribution is very likely to include the training
image permeability.

For the azimuth channels case, the distributions for the xx- and yy-permeability
contain the training image permeability for both the multi-grid Markov mesh model
and the Snesim algorithm. But for both methods the training image permeability
is in the tail, not so close to the mean, of the distributions. The multi-grid Markov
mesh model tends to make realizations with too little connectivity, the Snesim ap-
proach tends to make too much connectivity. It is reasonable that the results for the
xx-permeability is similar to the results for the yy-permeability, since the training
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image in this case has its main correlations along the x,y-diagonal and hence is
symmetric for x and y. The minute training image permeability in the zz-direction
is under-estimated/over-estimated by the multi-grid Markov mesh model and the
Snesim algorithm, respectively. But the percent-wise deviation is very small.

For the channel crevasse case and the isolated channels, both the multi-grid
Markov mesh model and the Snesim algorithm capture the scale of the permeabili-
ties, with small percent-wise deviations from the training image permeabilities. For
these training images the two methods behave very similar: they both have a ten-
dency to underestimate the xx- and yy-permeabilities for the channel crevasse case
and for the yy-permeability of the isolated channels; they both overestimate the xx-
permeability of the isolated channels; and they both tend to slightly overestimate the
zz-permeabilities.

Fig. 12 Effective permeability. Left: turbidite case, right: azimuth channels case. Upper row: multi-
grid Markov mesh model; lower row: Snesim algorithm. Red line: training image’s effective per-
meability.

Fig. 13 Effective permeability. Left: channels crevasse case, right: isolated channels case. Upper
row: multi-grid Markov mesh model; lower row: Snesim algorithm. Red line: training image’s
effective permeability.



Using Multiple Grids in Markov Mesh Facies Modeling 17

4.3 Volume fractions

Figures 14 and 15 compare the volume fraction distributions to the training images’
volume fractions. For easier comparison across training images the scale of the hor-
izontal axis is the same in all figures. The ability of the multi-grid Markov mesh
model in reproducing the training images’ volume fractions is comparable to the
ability of the Snesim algorithm.

Fig. 14 Volume fractions. Left: Turbidite case, right: azimuth channels case.

Fig. 15 Volume fractions. Left: Channels crevasse case, right: isolated channels case.

5 Conclusions

We have presented a multi-grid Markov mesh model for geological facies modeling.
This combines an advantage originally developed for algorithmic multipoint meth-
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ods — the use of multiple grids — with the flexibility and consistency of the statis-
tical approach to multipoint methods. The model consists of a hierarchy of nested
grids, with a single-grid Markov mesh model for each grid, but such that informa-
tion from coarser grids are taken into account. We have adopted the specification of
earlier published single-grid Markov mesh models, by using the framework of gen-
eralized linear models and a parametrization that captures continuity/discontinuity
of geological structures. The result is a model that is efficient and gives results com-
parable to that of a commercially available software based on the Snesim algorithm.
The comparison of results is carried out for four different training images. Repro-
duction of conceptual geology, efficient permeability, and facies volume fractions
were used as comparison criteria.
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