A Gaussian mixture Monte Carlo filter for state
estimation in very high dimensional nonlinear
systems
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Abstract State and parameter estimation in high dimensional systeoree of the
most problematic parts in both monitoring and control. lis fhaper we propose a
robustified Gaussian mixture filter (RGMF). The proposedffils a generalization
of the ensemble Kalman filter, and is more flexible for skewecholtimodal distri-
butions. We modify the proposed filter by Principal Compdreeralysis to remove
collinearity in the data and improve filter performance. Ryr) this we break up
the Gaussian mixtures by separating their means accomlthg fposterior distribu-
tion. Simulation results show that this modified versiontaf previously proposed
RGMF increases filter performance while it uses limited nanmdf samples as pre-
vious. Generally speaking the proposed filter works as fagiravious one but its
estimation accuracy and performance is better.

1 Introduction

State estimation is an important problem in engineeringsaiehce. If we represent
the system dynamics (differential or difference equaliomstate space form, the
measurements are transformed, noisy and an incompleteseqation of the sys-
tem state. Filtering methods extract the probability distion of the state at every
time point, given all measurements until that time. For dgitasystems it is natural
to perform the estimation process as soon as new obsersatiaue. Thus, recur-
sive Bayesian estimation algorithms are powerful for aeglivith filtering prob-

lems. This consists of sequentially going forward in timeading to a two-step
routine: i) a forward propagation step using the system dyes, and ii) an updat-
ing step when the new data gets available. Step i) is knowregsediction problem
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while step ii) is thefiltering problem Denote the state variable at tirhéy x;, and
let X; = (x1,...,%) be the collection of the state variables from time 1 to theentr
timet. Further, the observations at tihare denoteg;, andY; = (yy,...,%) is the
collection of observations at this current time step. Weiasscontinuous state and
observation variables, i.& € #Z" andy, € Z™, where the dimensionsandmtend
to get large in most modern applications. The filtering tasksists of sequential
propagation and updating as we obtain new observationgnatttl, consider that
we have the updated (filtering) distribution of the stateegiall observations until
that time, denoted by the densityx_1|y;, .., ¥;_1) = T(%—1|Yt—1). When the new
observatiory; is available, we combine the system dynamics and the liketiin
Bayes rule for the updating:

¥e %) (%[ Yi-1)
Ti(y;[Ye-1)

(% |Yt) O 7(ye %) 0% [Ye-1) O 7i(y; %) / TT(%, % -1Yt-1)d%-1

m(%|Yt) = ul

U "(Yt|xt)/ (% [Xe—1, Ye—1) TT(%—1[¥;—1)d% 1
3 k) [ ko2 oo 2)d @)

where the conditional independence assumption of theydetased. This recursive
Bayesian method gives the exact solution to the generaiiffiffgoroblem, but for
practical applications we cannot implement it for largetsys because we must
calculate multi dimensional complicated integrals. Tisasne simplified conditions
on the system dynamics and observations have to be congjdedeicing some
consistent approximations.

In this paper we present and extend an algorithm suggesReliaie and Eidsvik
(2012), which approximates the prediction and filteringriisitions by a shrinked
Gaussian mixture. This is a flexible approach to the statmagon problem, going
between the Ensemble Kalman filter and the Particle filtee détails of the algo-
rithm are outlined in Rezaie and Eidsvik (2012). In this exghed abstract we extend
the approach by using dimension reduction techniques foovéng the collinearity
in samples.

2 Robustified Gaussian mixture Monte Carlo filter

Assume that the system dynamics is generally nonlinear adititive Gaussian
noise,x = g(X—_1) + n,, whereg(.) is a general nonlinear function amgis zero
mean Gaussian process noise with covaridhee ~ N(n; 0,P), thus we have:

(% [%-1) = N(X; G (%-1),P), 2)

Also assume a linear likelihood model, with additive Gaassioise:
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T(Y;[%) = N(y; Hixe, R). (3)

The matrixH; is defined by the data acquisition of the problem, wilés the
covariance matrix of the measurement noise.

By plugging eqn. (2) and (3) in eqn. (1), we have a generakpistdistribution.
The filtering goal is to sequentially approximate and/oregate samples from this
posterior distribution as new observation arrives. Défdaralgorithms have been
proposed to approximate this posterior distribution witheptable errors.

2.1 Ensemble Kalman filter

Ensemble Kalman filter (EnKF) approximates the predictiigrithution with a
Gaussian oneftr(x|Yi—1) = N(X; %, Pt), wherex, and P; are the empirically es-
timated mean and covariance from forward propagated oiigiegisamples. These
predicted samples are achieved by propagating the samptagfevious filter dis-
tribution Xt 1,52 1,....%x8 ; ~ m(%_1|Y¢-1), through forward model. Finally, when
the predictive distribution is Gaussian, and also we haves&déinear likelihood,
then the posterior distribution is Gaussian (for more dietse Evensen 2009):

(x| Ye) O N(y; Hox, RIN(x; %, Pr)

(x[Ye) = Nt %+ PH Q3 — Hi%), )
S = P — PiH;Q, "H{P, Q = HiPH; + R (4)

2.2 Gaussian mixture filter

Gaussian mixture filter (GMF) approximates the predictigribution, 71(x[Yi-1)
with a weighted mixture of Gaussian distributions with kmoparameters and by
assuming Gauss linear likelihood, the posterior distidruis a new mixture of
Gaussian (let, denote the weights for the different components in the Ganss
mixtures):

B
m([Ye) O N(%;Hx.R) S voN(x; g(bx-y.P)
b=1

WbN(Xt;sztbaS)a (5)

Muw

m(%[Yt) =

b=1

Wherex’f’ and§ are the updated mean and covariance matrix, given compbnent
The components of the Gaussian mixture are obtained bydhdatd Kalman filter
update:
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€ = g (0¢_1) + PHQT L (v — Heg 0€_1)).
S = P—PH,Q 'HP, Q =H{PH,+R (6)

Where the weightsy, is proportional to the likelihood evaluated at samples—=
N(yeiHg0P ).
So-tNOHI0E ),

)Qt) (for more details see Rezaie and Eisvik, 2012).

2.3 Robustified Gaussian mixture filter

Another important filtering problem in high dimensionaltgyss is sample degener-
acy which means that all samples collapse to a few one andctmeyot capture the
statistical properties of the distributions. EnKF was megd to deal with this prob-
lem in a consistent manner, but it fails if the predictiveidlmtion is far a way from
Gaussian. On the other hand, GMF can approximate genethtfive and posterior
distributions by selecting sufficient number of Gaussiantares. Unfortunately,
GMF suffers from sample degeneracy which means one weigtibse to 1 and
the rests are almost zero. Rezaie and Eidsvik (2012) prd@osalgorithm for han-
dling both problems. The proposed method is a robustifiesimeof GMF (RGMF)
which combines EnKF and GMF, and it can approximate generstiepior distri-
butions without suffering from sample degeneracy in highetisional systems. In
RGMF, they define a new predicted sample §gt,b=1,...,B} by linear combina-
tion of the predicted sample mean and predicted samglesgg(X ;) + (1 —a)x.
By changing parameter, the shrinked predicted sampi#,moves on a line which
connectsq?andg(&bfl), (Figure 1. explains the effect of this tuning parameter).

The tuning parametes, , helps us to move between EnKF and GMF by shrinking
the predicted samples toward the mean. By proper selectianne can move pre-
dicted samples to high likelihood regions. Based on thesdyndefined predicted
samples, the posterior distribution is a mixture of Gausgidih known parameters
and weights (for more details see Rezaie and Eidsvik, 2012):

71(%|Yt) O N(yg; Hexe, R) 7% [ Yi—1).

B
xlYo) = 5 WNOGK,S), (7)
b=1

wherex? and§ are the updated mean and variance, given pattidle.
~ ~ ]
% =2 +PHQ (y —HZ)
§ =P —BH O HP, O =HPH +R (8)

WhereR is prediction variance for each mixture component. Natyrall matrices
in this expression depend on the shrinkage paransetéhe weights are now given

by
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Fig. 1 A graphical description of shrinkag = agt(xtb,l) + (1- a)x, the shrunk samples move
on the line (dot-line) which connects the ensemble meara(sjuo the ensemble members (dot
points).

Wb: N(ytaHtZ(baQt)~ )
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Figure 2 illustrates the predictive densities of the GMAKErand RGMF for a
particular O< a < 1. The GMF gives a very wiggly predictive density plot, while
the EnKF is a Gaussian density. Now, if data matches one ddplies, the parti-
cle associated with this spike would get a very large wewghin the GMF. This
could cause degeneracy. The RGMF is smoother, and closee {8dussian curve
representing the EnKF. If data matches one of the spike®iG¥F representation,
the associated increase in the weight for the RGMF, dengged/duld not get that
much larger than the remaining weights. In order to escampa fample degener-
acy, Rezaie and Eidsvik (2012) proposed an algorithm fecsielga in an adaptive
manner.

(9)

2.4 Principal component analysis in conjunction with RGMF

One problemin the updating part of EnKF based filters is ingisbllinear/correlated
data which causes model overfitting, and the estimated past®variance is un-
der estimated as a result. Rezaie et al., (2012) used diffetatistical dimension
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Fig. 2 The predictive distribution from EnKF (solid-line), GMFdsh-line) and RGMF (dot-line).

reduction techniques for finding and removing these cdllirdata. Based on their
work, principal component analysis (PCA) seems promisiP@A is one of the
most frequently used dimension reduction techniquesmgémentation is straight
forward by using singular value decomposition (SVD). PCAuses on finding the
structure of data ensemble matrix. By finding the structdrdata, we mean that
PCA finds the directions which data has maximum variabifity (nore details see
Hastie et al., 2009). Clearly speaking, if the data is in datce with its own struc-
ture according to basis of this space, the first principal ponent is defined as a
vector which represents the first maximum variability dii@t of data, the second
principal component is the direction of the second maximanmbility of data etc.
Besides, these PCs are chosen such that they are orthonBynivansforming these
data from data space to PC space (with PCs as the basis feptus) the structure
of the data and its actual dimension are found and we can rethevless signif-
icant part of the data by removing the last PCs (Figure 3.esprt the concept of
PC direction and data variability).

A popular criterion for selecting the subspace dimensiethérefore to choose
the number of components so that the explained variance is larger than some

tolerance levelf (e.g. 98%). According to Seetrom and Omre (2010) we can look

at the update part of Kalman based filters as a linear regressipredicted state
on observations and the regression coefficient matrix ik#iman gain. Thus, the
final step is regressing the shrinked samples on the selB@edn order to find the
Kalman gain.
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Fig. 3 The principal components for a two dimensional examplefie&s al. 2009

3 Simulation results

In the example we compare the different algorithms in terfma@an square error
(MSE), continuously ranked probability score (CRPS) antbvece of the weights.
Here, at any time we haveMSE(t) = 5 ;(Xj — X/{®)?, wherexj is the estimated
mean of the filtering distribution and the sum is overralitate dimensions. An
integrated MSE is achieved by summing dauturther, the CRPS is defined by
CRPSt) =3 (F(yj1) — 1 (yj: < ¥?5%)% Here F(.) is the empirical cumulative pre-
dictive distribution for data at timg given all former dat&; ;. Smaller values of
CRPS means better predictive power. It shows that we ofteicmthe observed
value, and that we have a narrow prediction band. The sunreisathm observation
dimension, and an integrated CRPS is obtained by summingativ@nest.

Rezaie and Eidsvik (2012) apply the robustified filter to rméisdata assimila-
tion, and Rezaie et al (2012) use the PCA dimension reduftiasimilar purposes.
Here, we discuss a synthetic example for target trackinggtwhas many facets
similar to petroleum reservoir monitoring.



8 Javad Rezaie, Jo Eidsvik

3.1 Tracking targets with bimodal distributions

This example describes the position and velocity of plameships moving in two
dimensions. If we imagine a monitoring system for planeshipss their positions
are measured by radar /sonar. The targets move in a depgratearn, i.e. if one
turn, others are likely to turn as well.

In this simulation we consider 100 sensor 100 target (systiemension isn =
400 and observation dimensiomis= 200), also the number of ensembels is B=50.
We letx: = X % Wt yt]’ be the state vector of one target. For one target ) is the
(north,east) position, and similar(y y:) is the (north,east) velocity. The absolute
velocity isv = /*¢ +y? , while the target is moving at bearimg = arctani%).

With constant velocities, a target moves in a straight lared the dynamical
model is linear. We consider a situation where a target marres (30 degrees) to
the west whenever the velocity becomes smaller than a thresholdrhis model
is nonlinear, and the dynamics can be phrasedtpy|x_1) ~ N(%; g (%-1),P).
Using a time-stepl T , the one-target dynamics for large velocity is:

1dT0 07 [x_1
0101 |x.1

gt(xtfl): 0 0 1dT Vi1 (10)
000 1| |V
while for small velocity:
X1+ dTcogn)v—1
coyNe)vi-1
1) = ; 11
% (x-1) Yi-1+dTsin(n)v-1 (1)
sin(ne)ve-1
s .
’lt:g+rlt—1, if w1<c (12)

Thus, bearingy: of one target at timéchanges westward when the absolute ve-
locity is small. This has effect on the north and east vejpeihereas the absolute
velocity v = v;_1 remains the same, on expectation. As a consequence, the-pred
tions of the north and east positions will tend to be skewedultimodal, when the
distribution for velocity is near the critical velocity

The process noise covariance matriRis- diag[0.5°, 22, 057, 2?])and
initial conditions are drawn from(Xo; to, Po) whereu, = [1000, 75, 1000,
75 andPy = 100P. We introduce a fixed correlation of®between all targets, and
the joint covariance is block diagonal in the multi-targaiation.

We observe the north and east position at every time poitt,@aussian additive
noise. Thus, the likelihood model for position data is linead can be phrased by
Ti(y;|%) ~ N(y;; Hix, R) whereR = diag([5> 57]) and:
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Simulation results show that using the PCA in the RGMF atbarigenerally in-
crease the filter performance. According to Figure 4., wetlsaethe MSE of these
filters are more or less in a same range (left plotin Figureditithe CRPS value for
RGMF-PCA filter is much lower than the others (upper right pid=igure 4.). This
means the performance of RGMF-PCA increased in CRPS settsautvsacrificing
the MSE. These two parameters show that the performance MRRBBCA for es-
timating the posterior distribution is better than the osh8esides, the variance of
the weights, and equivalently the effective sample sizéh@proposed filter (lower
right plot in Figure 4.) is lower than the others, which shale modified filter can
better handle sample degeneracy.

- - EnkF -=-EnkF
~ RGMF -+ RGMF

=7 -+~ RGMF-PCA
-~ RGMF-PCA e GMF
——GMF

Iteration

MSE
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T B g g B E . g
Iteration Iteration

Fig. 4 Comparison of the filters in MSE (left), CRPS (upper right)davariance of the weights
(lower right) senses.
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