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Abstract State and parameter estimation in high dimensional systemsis one of the
most problematic parts in both monitoring and control. In this paper we propose a
robustified Gaussian mixture filter (RGMF). The proposed filter is a generalization
of the ensemble Kalman filter, and is more flexible for skewed or multimodal distri-
butions. We modify the proposed filter by Principal Component analysis to remove
collinearity in the data and improve filter performance. By doing this we break up
the Gaussian mixtures by separating their means according to the posterior distribu-
tion. Simulation results show that this modified version of the previously proposed
RGMF increases filter performance while it uses limited number of samples as pre-
vious. Generally speaking the proposed filter works as fast as previous one but its
estimation accuracy and performance is better.

1 Introduction

State estimation is an important problem in engineering andscience. If we represent
the system dynamics (differential or difference equations) in state space form, the
measurements are transformed, noisy and an incomplete representation of the sys-
tem state. Filtering methods extract the probability distribution of the state at every
time point, given all measurements until that time. For dynamic systems it is natural
to perform the estimation process as soon as new observations arrive. Thus, recur-
sive Bayesian estimation algorithms are powerful for dealing with filtering prob-
lems. This consists of sequentially going forward in time according to a two-step
routine: i) a forward propagation step using the system dynamics, and ii) an updat-
ing step when the new data gets available. Step i) is known as theprediction problem,
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while step ii) is thefiltering problem. Denote the state variable at timet by xt , and
let Xt = (x1, . . . ,xt) be the collection of the state variables from time 1 to the current
time t. Further, the observations at timet are denotedyt , andYt = (y1, . . . ,yt) is the
collection of observations at this current time step. We assume continuous state and
observation variables, i.e.xt ∈ Rn andyt ∈ Rm, where the dimensionsn andm tend
to get large in most modern applications. The filtering task consists of sequential
propagation and updating as we obtain new observations. At time t-1, consider that
we have the updated (filtering) distribution of the state given all observations until
that time, denoted by the densityπ(xt−1|y1, ...,yt−1) = π(xt−1|Yt−1). When the new
observationyt is available, we combine the system dynamics and the likelihood in
Bayes rule for the updating:

π(xt |Yt) =
π(yt |xt)π(xt |Yt−1)

π(yt |Yt−1)

π(xt |Yt) ∝ π(yt |xt)π(xt |Yt−1) ∝ π(yt |xt)

∫

π(xt ,xt−1|Yt−1)dxt−1

∝ π(yt |xt)

∫

π(xt |xt−1,Yt−1)π(xt−1|Yt−1)dxt−1

∝ π(yt |xt)
∫

π(xt |xt−1)π(xt−1|Yt−1)dxt−1 (1)

where the conditional independence assumption of the datayt is used. This recursive
Bayesian method gives the exact solution to the general filtering problem, but for
practical applications we cannot implement it for large systems because we must
calculate multi dimensional complicated integrals. Thus,some simplified conditions
on the system dynamics and observations have to be considered, inducing some
consistent approximations.

In this paper we present and extend an algorithm suggested inRezaie and Eidsvik
(2012), which approximates the prediction and filtering distributions by a shrinked
Gaussian mixture. This is a flexible approach to the state estimation problem, going
between the Ensemble Kalman filter and the Particle filter. The details of the algo-
rithm are outlined in Rezaie and Eidsvik (2012). In this expanded abstract we extend
the approach by using dimension reduction techniques for removing the collinearity
in samples.

2 Robustified Gaussian mixture Monte Carlo filter

Assume that the system dynamics is generally nonlinear withadditive Gaussian
noise,xt = g(xt−1)+ nt , whereg(.) is a general nonlinear function andnt is zero
mean Gaussian process noise with covarianceP, nt ∼ N(nt ;0,P), thus we have:

π(xt |xt−1) = N(xt ;gt(xt−1),P), (2)

Also assume a linear likelihood model, with additive Gaussian noise:
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π(yt |xt) = N(yt ;Htxt ,R). (3)

The matrixHt is defined by the data acquisition of the problem, whileR is the
covariance matrix of the measurement noise.

By plugging eqn. (2) and (3) in eqn. (1), we have a general posterior distribution.
The filtering goal is to sequentially approximate and/or generate samples from this
posterior distribution as new observation arrives. Different algorithms have been
proposed to approximate this posterior distribution with acceptable errors.

2.1 Ensemble Kalman filter

Ensemble Kalman filter (EnKF) approximates the predictive distribution with a
Gaussian one,̂π(xt |Yt−1) = N(xt ; x̄t , P̄t), wherex̄t and P̄t are the empirically es-
timated mean and covariance from forward propagated or predicted samples. These
predicted samples are achieved by propagating the samples from previous filter dis-
tribution x1

t−1,x
2
t−1, ...,x

B
t−1 ∼ π(xt−1|Yt−1), through forward model. Finally, when

the predictive distribution is Gaussian, and also we have Gauss linear likelihood,
then the posterior distribution is Gaussian (for more details see Evensen 2009):

π̂(xt |Yt) ∝ N(yt ;Htxt ,R)N(xt ; x̄t , P̄t)

π̂(xt |Yt) = N(xt ; x̄t + P̄tH
′

tQ̄
−1
t (yt −Ht x̄t), S̄t)

S̄t = P̄t − P̄tH
′

tQ̄
−1
t Ht P̄t ,Q̄t = Ht P̄tH

′

t +R. (4)

2.2 Gaussian mixture filter

Gaussian mixture filter (GMF) approximates the predictive distribution,π(xt |Yt−1)
with a weighted mixture of Gaussian distributions with known parameters and by
assuming Gauss linear likelihood, the posterior distribution is a new mixture of
Gaussian (letvb denote the weights for the different components in the Gaussian
mixtures):

π(xt |Yt) ∝ N(yt ;Htxt ,R)
B

∑
b=1

vbN(xt ;g(bxb
t−1,P)

π(xt |Yt) =
B

∑
b=1

wbN(xt ; x̂b
t ,St), (5)

wherex̂b
t andSt are the updated mean and covariance matrix, given componentb.

The components of the Gaussian mixture are obtained by the standard Kalman filter
update:
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x̂b
t = gt(x

b
t−1)+PH

′

tQ
−1
t (yt −Htgt(x

b
t−1)),

St = P−PH
′

tQ
−1
t HtP, Qt = HtPH

′

t +R. (6)

Where the weightswb is proportional to the likelihood evaluated at samples,wb =
N(yt ;Htg(xb

t−1),Qt )

∑B
c=1 N(yt ;Htg(xc

t−1),Qt )
(for more details see Rezaie and Eisvik, 2012).

2.3 Robustified Gaussian mixture filter

Another important filtering problem in high dimensional systems is sample degener-
acy which means that all samples collapse to a few one and theycannot capture the
statistical properties of the distributions. EnKF was proposed to deal with this prob-
lem in a consistent manner, but it fails if the predictive distribution is far a way from
Gaussian. On the other hand, GMF can approximate general predictive and posterior
distributions by selecting sufficient number of Gaussian mixtures. Unfortunately,
GMF suffers from sample degeneracy which means one weight isclose to 1 and
the rests are almost zero. Rezaie and Eidsvik (2012) proposed an algorithm for han-
dling both problems. The proposed method is a robustified version of GMF (RGMF)
which combines EnKF and GMF, and it can approximate general posterior distri-
butions without suffering from sample degeneracy in high dimensional systems. In
RGMF, they define a new predicted sample set,{zb

t ,b= 1, ...,B} by linear combina-
tion of the predicted sample mean and predicted samples,zb

t =αg(xb
t−1)+(1−α)x̄t .

By changing parameterα, the shrinked predicted sample,zb
t moves on a line which

connects ¯xt andg(xb
t−1), (Figure 1. explains the effect of this tuning parameter).

The tuning parameter,α , helps us to move between EnKF and GMF by shrinking
the predicted samples toward the mean. By proper selection of α we can move pre-
dicted samples to high likelihood regions. Based on these newly defined predicted
samples, the posterior distribution is a mixture of Gaussian with known parameters
and weights (for more details see Rezaie and Eidsvik, 2012):

π̃(xt |Yt) ∝ N(yt ;Htxt ,R)π̃(xt |Yt−1),

π̃(xt |Yt) =
B

∑
b=1

w̃bN(xt ; x̃
b
t , S̃t), (7)

wherex̃b
t andS̃t are the updated mean and variance, given particleb, i.e.

x̃b
t = zb

t + P̃tH
′

tQ̃
−1
t (yt −Htz

b
t )

S̃t = P̃t − P̃tH
′

tQ̃
−1
t Ht P̃t , Q̃t = Ht P̃tH

′

t +R. (8)

WhereP̃t is prediction variance for each mixture component. Naturally, all matrices
in this expression depend on the shrinkage parameterα. The weights are now given
by
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Fig. 1 A graphical description of shrinkagezb
t = αgt(x

b
t−1)+(1−α)x̄t , the shrunk samples move

on the line (dot-line) which connects the ensemble mean (square) to the ensemble members (dot
points).

w̃b =
N(yt ;Htzb

t ,Q̃t)

∑B
c=1N(yt ;Htzc

t ,Q̃t)
. (9)

Figure 2 illustrates the predictive densities of the GMF, EnKF and RGMF for a
particular 0< α < 1. The GMF gives a very wiggly predictive density plot, while
the EnKF is a Gaussian density. Now, if data matches one of thespikes, the parti-
cle associated with this spike would get a very large weightwb in the GMF. This
could cause degeneracy. The RGMF is smoother, and closer to the Gaussian curve
representing the EnKF. If data matches one of the spikes in the GMF representation,
the associated increase in the weight for the RGMF, denoted ˜wb, would not get that
much larger than the remaining weights. In order to escape from sample degener-
acy, Rezaie and Eidsvik (2012) proposed an algorithm for selectingα in an adaptive
manner.

2.4 Principal component analysis in conjunction with RGMF

One problem in the updating part of EnKF based filters is in using collinear/correlated
data which causes model overfitting, and the estimated posterior covariance is un-
der estimated as a result. Rezaie et al., (2012) used different statistical dimension
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EnKF

RGMF

GMF

Fig. 2 The predictive distribution from EnKF (solid-line), GMF (dash-line) and RGMF (dot-line).

reduction techniques for finding and removing these collinear data. Based on their
work, principal component analysis (PCA) seems promising.PCA is one of the
most frequently used dimension reduction techniques. Its implementation is straight
forward by using singular value decomposition (SVD). PCA focuses on finding the
structure of data ensemble matrix. By finding the structure of data, we mean that
PCA finds the directions which data has maximum variability (for more details see
Hastie et al., 2009). Clearly speaking, if the data is in dataspace with its own struc-
ture according to basis of this space, the first principal component is defined as a
vector which represents the first maximum variability direction of data, the second
principal component is the direction of the second maximum variability of data etc.
Besides, these PCs are chosen such that they are orthonormal. By transforming these
data from data space to PC space (with PCs as the basis for thisspace) the structure
of the data and its actual dimension are found and we can remove the less signif-
icant part of the data by removing the last PCs (Figure 3. represent the concept of
PC direction and data variability).

A popular criterion for selecting the subspace dimension, is therefore to choose
the number of componentsp so that the explained variance is larger than some
tolerance level,β (e.g. 98%). According to Sætrom and Omre (2010) we can look
at the update part of Kalman based filters as a linear regression of predicted state
on observations and the regression coefficient matrix is theKalman gain. Thus, the
final step is regressing the shrinked samples on the selectedPCs in order to find the
Kalman gain.
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Fig. 3 The principal components for a two dimensional example, Hastie et al. 2009

3 Simulation results

In the example we compare the different algorithms in terms of mean square error
(MSE), continuously ranked probability score (CRPS) and variance of the weights.
Here, at any timet we haveMSE(t) = ∑ j(x̂ j ,t − xtrue

j ,t )2, where ˆx j ,t is the estimated
mean of the filtering distribution and the sum is over alln state dimensions. An
integrated MSE is achieved by summing outt. Further, the CRPS is defined by
CRPS(t) = ∑ j(F̂(y j ,t)− I(y j ,t < yobs

j ,t ))
2. Here,F̂(.) is the empirical cumulative pre-

dictive distribution for data at timet, given all former dataYt−1. Smaller values of
CRPS means better predictive power. It shows that we often match the observed
value, and that we have a narrow prediction band. The sum is over allmobservation
dimension, and an integrated CRPS is obtained by summing over all timest.

Rezaie and Eidsvik (2012) apply the robustified filter to seismic data assimila-
tion, and Rezaie et al (2012) use the PCA dimension reductionfor similar purposes.
Here, we discuss a synthetic example for target tracking, which has many facets
similar to petroleum reservoir monitoring.
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3.1 Tracking targets with bimodal distributions

This example describes the position and velocity of planes or ships moving in two
dimensions. If we imagine a monitoring system for planes or ships, their positions
are measured by radar /sonar. The targets move in a dependentpattern, i.e. if one
turn, others are likely to turn as well.

In this simulation we consider 100 sensor 100 target (systemdimension isn =
400 and observation dimension ism= 200), also the number of ensembels is B=50.
We letxt = [xt ẋt yt ẏt ]

′
be the state vector of one target. For one target,(xt yt) is the

(north,east) position, and similarly(ẋt ẏt) is the (north,east) velocity. The absolute
velocity isvt =

√

ẋ2
t + ẏ2

t , while the target is moving at bearingηt = arctan( yt
xt
).

With constant velocities, a target moves in a straight line,and the dynamical
model is linear. We consider a situation where a target manoeuvres (30 degrees) to
the west whenever the velocityvt becomes smaller than a thresholdc. This model
is nonlinear, and the dynamics can be phrased byπ(xt |xt−1) ∼ N(xt ;gt(xt−1),P).
Using a time-stepdT , the one-target dynamics for large velocity is:

gt(xt−1) =









1 dT 0 0
0 1 0 1
0 0 1dT
0 0 0 1

















xt−1

ẋt−1

yt−1

ẏt−1









(10)

while for small velocity:

gt(xt−1) =









xt−1+dTcos(ηt)vt−1

cos(ηt)vt−1

yt−1+dTsin(ηt)vt−1

sin(ηt)vt−1









(11)

ηt =
π
6
+ηt−1, if vt−1 < c. (12)

Thus, bearingηt of one target at timet changes westward when the absolute ve-
locity is small. This has effect on the north and east velocity, whereas the absolute
velocityvt = vt−1 remains the same, on expectation. As a consequence, the predic-
tions of the north and east positions will tend to be skewed ormultimodal, when the
distribution for velocity is near the critical velocityc.

The process noise covariance matrix isP= diag([0.52, 22, 0.52, 22]) and
initial conditions are drawn fromN(x0;µ0,P0) whereµ0 = [1000, 75, 1000,
75]

′
andP0 = 100P. We introduce a fixed correlation of 0.9 between all targets, and

the joint covariance is block diagonal in the multi-target situation.
We observe the north and east position at every time point, with Gaussian additive

noise. Thus, the likelihood model for position data is linear and can be phrased by
π(yt |xt)∼ N(yt ;Htxt ,R) whereR= diag([52 52]) and:
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Ht =

[

1 0 0 0
0 0 1 0

]

Simulation results show that using the PCA in the RGMF algorithm generally in-
crease the filter performance. According to Figure 4., we seethat the MSE of these
filters are more or less in a same range (left plot in Figure 4.), but the CRPS value for
RGMF-PCA filter is much lower than the others (upper right plot in Figure 4.). This
means the performance of RGMF-PCA increased in CRPS sense without sacrificing
the MSE. These two parameters show that the performance of RGMF-PCA for es-
timating the posterior distribution is better than the others. Besides, the variance of
the weights, and equivalently the effective sample size, ofthe proposed filter (lower
right plot in Figure 4.) is lower than the others, which showsthe modified filter can
better handle sample degeneracy.
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Fig. 4 Comparison of the filters in MSE (left), CRPS (upper right), and variance of the weights
(lower right) senses.
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