Non-parametric diagrams for plurigaussian
simulations of lithologies
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Abstract Although truncated plurigaussian models have been proposed more than
two decades ago, their practical use has been limited by three major impediments:
first, the difficulty to relate underlying Gaussian variables to physically interpretable
processes; second, the estimation of a truncation diagram from data or concepts is
not intuitive for geologists; third, updating a truncation diagram according to cur-
rent proportions could be a challenge (current practice is to simplify truncation di-
agrams with rectangular domains). When bivariate auxiliary information and litho-
facies data are available at wells, we present an approach for using a bi-Gaussian
model allowing for very general shapes. The general idea is to relate the Gaussian
variables to auxiliary variables using kernel regression and to build assignation dia-
grams by calibration with lithofacies observed at wells.

1 Introduction

The basic idea behind truncated and plurigaussian simulations is to start out by sim-
ulating one or more Gaussian random fields at every grid point in the study domain
and to use some simple rule to convert these Gaussian values into lithotype indica-
tors. With truncated Gaussian simulations (Matheron et al., 1987), lithofacies must
ordered and, on any fine resolution grid, lithofacies that are not successors in the
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stratigraphic sequence will never be in contact. This feature proves to be too restric-
tive, for example if there is no ordered sequence in the facies, or if certain facies
can be in contact with more than two facies. To overcome these limitations, pluri-
gaussian simulations was proposed (Galli et al., 1994; Le Loc’h et al., 1996). Later,
theoretical and algorithmical advances have been made in order to handle many un-
derlying Gaussian random fields (Dowd et al., 2003; Xu et al., 2006; Emery, 2007)
and to co-simulate continuous and categorical variables (Emery and Silva, 2009).
Applications of plurigaussian simulations are numerous for modeling reservoirs but
also in hydrogeology for modeling aquifers (Mariethoz et al., 2009).

In plurigaussian models, a set of p Gaussian random fields are used to define
the lithofacies structure. Generally, p = 2, and we will stick to this choice in the
remaining of this work. Lithofacies are then assigned according to a rock type rule
(Armstrong et al., 2003). Typical rock type rules separate the bi-Gaussian domain
R? along vertical and horizontal lines. The precise layout of these lines define the
type of the chosen model. Figure 1 represents one example of a rock type rule along
with one realization of the categorical variable “lithofacies”. The realization of the
lithofacies variable shows a pattern in direct relation with this rock type rule, which
is here parametrized by two values. Armstrong et al. (2003) distinguishes four steps
in a plurigaussian simulation approach.

1. Choosing the model type, that is the rock type rules that best suit to the problem
at hand. Since the correspondence between rock type rules and patterns of simu-
lated lithofacies is not at all obvious, Armstrong et al. (2003) provided a catalog
of examples of rock type rules with simulated patterns. This first step is crucial.
Yet, at the same time i) quantitative rules for choosing a model type are limited
to information on lithofacies contacts; ii) in the 2-dimensional Gaussian plane,
boundaries between lithofacies must usually be parallel to the axes.

2. Estimating the parameter values. The exact value of the thresholds (i.e. the exact
location of the horizontal and vertical lines on the (¥;,Y,) plane) is in straight-
forward relation to the target proportions, which can vary on the simulation
grid. Knowing the mathematical relation between indicator variograms and vari-
ograms of the underlying Gaussian variables, it is possible estimate the variogram
parameters.

3. Generating Gaussian values at the conditioning points. This task is usually per-
formed using a MCMC simulation algorithm, such as the Gibbs sampler.

4. Simulating Gaussian values at each grid node with a usual Gaussian simulation
algorithm.

Finally, the Gaussian values are transformed into the lithofacies categorical vari-
able using the rock type rule applied with the local parameters when necessary.
The drawbacks of this approach are multiple: i) when there are more than a very
few lithofacies (say, if K > 5), it is extremely difficult to chose a model type and
rock type rules; ii) estimating the parameters of the variogram becomes extremely
cumbersome; iii) since there is no direct interpretation of the underlying Gaussian
variables, geologists are sometimes reluctant to use this method.
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Fig. 1 Examples of rock type rules for truncated bi-Gaussian simulations.

We therefore propose a method which overcomes some of these limitations when
auxiliary variables, such as seismic attributes /,, (acoustic impedance of compressive
waves) and P, (Poisson ratio) are available.

1. The underlying Gaussian variables are related to the seismic attributes, when
they exist. We thus transform the seismic attributes into Gaussian scores. The
parameters of their bivariate variograms will be estimated from these Gaussian
scores, hence greatly simplifying this estimation step.

2. The rock-type rule will be built from the simultaneous knowledge of the seis-
mic attributes and the lithofacies at wells and/or drill-holes. By doing so, the
geologists do not need anymore to choose among a catalog of rock model. The
rock-type rules do not need to follow simple geometry such as lines parallel to
the axis, etc. The rock-type rules, also called assignation diagram below, will be
automatically tailored to the data and to any vector of target proportions. It can
handle a large number of lithofacies (tested with up to 11 lithofacies, on a real
case study).

Note that in absence of auxiliary variables, synthetic variables can be used to build
assignation diagrams. This approach will be illustrated In Section 6.

In the next Section, we will show below how the rock-type rules are defined from
the data. In Section 3, we present an algorithm for honoring any vector of target
proportions. An illustration on simulated data with four lithofacies is presented in
Section 4. The main steps of plurigaussian simulation with our approach are then
detailed in Section 5. Finally, a real case study with 11 lithofacies is presented in
Section 6.

2 Non-parametric assignation diagrams

After transformation to uniform scores, the bivariate auxiliary variable (seismic at-
tributes, synthetic variables defined by the user, ...) are denoted U= (V,W) € 9 =
[0,1] x [0,1]. Note that other transforms, such as Gaussian transform could also be
used, but this point is of secondary importance. Uniform transforms have been cho-
sen here, because with this transform the area of lithofacies on Z is equal to its
probability. We will denote u = (v, w) a position vector of the variables (V,W) € 2.
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We consider that these values are available at every point x of a geological grid. A
lithofacies function F assigns to each point x a value k € {1,...,K} corresponding
to the lithofacies. Remember that we do not require the lithofacies to be ordered
in any way. Neither do we impose a parametric shape for the arrangement of the
lithofacies on the diagram.

The general idea is that the probability of each lithofacies is related to the (trans-
formed) auxiliary variable. Mathematically speaking, we consider that there exist
functions

P(F(x) = k| U(x)) = fi(U), M
which are the conditional probabilities of the lithofacies given U.

From the simultaneous knowledge of the auxiliary variable and the lithofacies at
data points x1,...,X, (e.g. measured at wells), a kernel regression estimate (Silver-
man, 1986) of these conditional probabilities is

Yy Kn(u—wi) (e, —
Y Kn(u—w) 7
where i = 1,...,nis an index on all data and /|) is the indicator fuction of event A,

equal to 1 if A is verified and equal to 0 otherwise. The function Kj(x) is the kernel
function

Je(w) =P(k|u) = ©)

Kn(x) = @ 3)

where K(x) is an even function such that [z2 K(x)dx = 1 and [p2 K*(X)dX < oo.

Common kernels are the Gaussian kernel K (x) = (277:)’18’”"”2/ 2 and the bi-squared
kernel K(X) = 3(1 — HX”Z)Z/”I(HXHSI) .

From Eq. (1), it is easy to check that

=

few)=1
|

k

for all u in 2. Up to border effects, one can also check that

/ﬁ@wzwm
_@

the observed frequency of data with lithofacies k.

From these functions, it is quite natural to define an assignation diagram (i.e.,
a rock-type rule) by assigning to each value of the seismic variables u the litho-
facies with the highest conditional probability, i.e. Fr(u) = argmax;(f;(u)). Note
that this operation is not a truncation of the value u as it is the case in the usual
plurigaussian approach, but it is a maximum probability assignation. It is, however,
a rock-type rule. Since this operation is highly non-linear, it is quite clear that the
proportion py = [, Fr(u)du obtained from Fr will be quite different to ny/n. Let
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us thus consider the vector of values (ay,...,ax) which will multiply the condi-
tional probabilities, thereby defining intensities ay fy (u). Note that these intensities
are not conditional probabilities since ):f:l difr(u) is not necessarily equal to 1.
The lithofacies now becomes

Fr(u) = argmax (a; fi(w)). “)

In order to verify specified proportions (7, ...,Tx) one must thus find the factors
a=(ay,...,ax) such that

I _du= P (a) = m. 5

./[O,I]X[O,l] P (w)=A (@) =7 ©)

In the following, we will impose, without loss of generality that ):,]f:l ap=1.

3 Finding an assignation diagram

Let us denote by ¢ (a) the vector of proportions obtained after assignation according
to Eq. (4), i.e. @(a) = (P;(a),..., Px(a))". To solve the inverse problem in Eq. (5)
we build the score function

K
S= Y (P(a)~ m)* = (®(a) — ) (P(a) — ) (6)
k=1

which is to be minimized. The inverse problem now becomes a minimization prob-
lem which is solved by a modified Gauss-Newton algorithm with a Marquardt reg-
ularization (Marquardt, 1963). The algorithm is briefly presented in Appendix A.
Numerous experiments, not presented here have shown the following properties:

The algorithm almost always converges when initialized with a = 7. The rare
cases with lack of convergence were observed when one of the output proportions
is imposed to be very close to 0. In this case, the algorithm gets sometimes stuck.
When this happens, the algorithm must be started again with a different starting
point.

Perhaps surprisingly, the vector (ay,...,ax) corresponding to the target propor-
tion (7y,. .., k) is unique. This ensures that the assignation diagram correspond-
ing to imposed proportions is unique.

Starting from an initial solution corresponding to a vector of proportions (7, ..., Tk ),
the algorithm converges to a new vector of proportions (7|, ..., ) in only very
few iterations when Y&, (7 — 7] )? is small.

In many applications, the target proportions cannot be considered as stationary.

A different vector (a;(X),...,ax(x)) must thus be computed for each different vec-
tor of target proportions (7 (x),..., Tk (x)). Clustering similar target proportions in
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groups and applying the above minimization problem in some optimized way allows
to use this approach on large to very large grids.

4 Synthetic data

500 data location are drawn uniformly in [0.1,0.9] x [0.1,0.9]. A category k, from
1 to 4 is assigned randomly with a probability proportional to the inverse squared
distance to, respectively, (0.25,0.25), (0.75,0.25), (0.25,0.75), (0.75,0.75). The
resulting conditional densities fi(u),..., f4(u), computed with a bi-squared kernel
and i = 0.48 are shown in the top panels of Figure 2. The solution vectors a cor-
responding to four different vectors were computed with S < 1073, Results are re-
ported Table 1. The corresponding assignation diagrams are shown in the bottom
panels of Figure 2.

Table 1 Target proportions and solution vectors for the simulated data

n=P(a) a

(0.1,0.2,0.2,0.5)

(0.2,0.1,0.5,0.2)

(0.7,0.1,0.1,0.1)
(0.25,0.25,0.25,0.25)

0.069,0.364,0.321,0.246
0.127,0.365,0.404,0.104
0.563,0.202,0.178,0.057
0.139,0.394,0.353,0.114

AAAA
NN

There is no direct correspondence between a value a; and its corresponding
output proportion P (a). For example an output proportion of 0.1 for the second
category is obtained with a, = 0.365 in the second case while it is obtained with
ap = 0.202 in the third case. The value a; does not only depend on the correspond-
ing target proportions but it depends on the complete vector of target proportions.

It is interesting to note how each domain is stretched or shrunk as the proportions
vary. See for example how the purple lithofacies is mainly located in the bottom left
corner. As its proportions increases, it expands in the regions where the data points
are mostly found, i.e. in the upper left corner.
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Fig. 2 Conditional densities of simulated data (top) and assignation diagram for four contrasted
vector of proportions (bottom). Purple: k = 1; Blue: k = 2; Green: k = 3. Orange: k = 4.
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5 Plurigaussian simulation with assignation diagram

The full work-flow for performing a plurigaussian simulation with the non-parametric
assignation diagram described above is not very different to the usual work-flow.

1. The seismic attributes are first transformed into normal scores, from which a
bivariate variogram model is estimated/fitted.

2. The normal scores are then transformed into uniform scores.

3. In absence of auxiliary variables, step 1. and 2. are skipped. Instead, the user
defines a set of synthetic data points in U € &, along with the desired lithofacies
attribute.

4. From the simultaneous knowledge of the auxiliary variables and the lithofacies
information at the data points, the conditional probabilities f; are computed with
kernel regression estimate (Eq. (2)).

5. Bi-variate Gaussian values are simulated at lithofacies conditioning points with
the use of a Gibbs Sampler. The simulated Gaussian value must correspond to
the conditioning lithofacies for the local assignation diagram (if proportions are
non-stationary).

6. A bivariate Gaussian Random field is then simulated conditionally to all Gaus-
sian values, transformed from data, or simulated at the previous step.

7. Lithofacies values resulting from the application of the local assignation diagram
to the simulated Gaussian values are found.

6 Case study

The approach has been tested on a real field case in Western Africa. It is a complex
facies model in a mixed carbonated platform environment influenced by complex
progradational and retrogradational mechanisms. Eleven litho-facies are depicted on
cores and propagated through the log interpretations of the large number of available
wells.

Relevant geophysical attributes are not available for this reservoir; but however,
from geological concepts, we have a precise idea of possible contacts between the
litho-facies. For this reason, it has been decided to build from scratch the assignation
diagram; in the unit square of uniform scores, synthetic data points are digitalized
(Fig. 3, left panel). Kernel regression (Eq. 2) allows us to compute the eleven func-
tions f(x). Figure 3 (right panel) shows the initial assignation diagram corresponding
toay=1fork=1,...,K.

The probabilities of occurrence of the different litho-facies are also provided by
the project; it consists in a set of eleven 3D properties depicting the 3D trends of
probability for the eleven litho-facies; these 3D cubes are issued from geological
conceptual zones definition mixed with litho-facies well data statistical analysis.

Using the algorithm of Appendix A (Gauss-Newton iterative process with Mar-
quardt regularization), it is possible to modify the initial assignation diagram in
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Fig. 3 Initial assignation diagram construction. Left: digitized point sets with facies assignation.
Right: initial litho-facies polygons corresponding to a, = 1 fork=1,...,K

order to fit to local proportions. Two Gaussian random fields with Gaussian vari-
ograms (kilometric horizontal range and decametric vertical range) are then simu-
lated on a geological grid. At each grid node, the local assignation diagram is used
to select the simulated litho-facies as a function of the unit-square transformation of
the local Gaussian values, thus obtaining a full non-stationary 3D geological model.
Two 3D probability cubes and one realization of the litho-facies variable are illus-
trated in Figure 4. Non-stationarity of the proportions is fairly well reproduced.

To understand more clearly the deformation of the initial assignation diagram, a
2D view is presented for one particular layer of the reservoir (Figure 5). Note how
the assignation diagram varies in order to reach target proportions that are com-
pletely different from those prevailing in initial assignation diagram. In particular, a
striking feature of our approach is that, preferential contact between lithofacies are
respected for all input vector of proportions, even though many of the 11 lithofacies
have an imposed proportion set to 0.

7 Conclusion and discussion

We proposed a new approach for performing plurigaussian simulations. Instead of
building tuncation diagram with very few parameters and limits between litho-facies
mostly parallel to the axes, we propose to relate the rock type rules to auxiliary vari-
ables such as sesimic attributes, with the use of kernel regression. In abscence of
relevant geophysical variables, synthetic assignation diagram can be built from con-
ceptual ideas concerning litho-facies contacts (facies substitution diagrams), control
points are digitized manually.
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Fig. 4 3D view of the reservoir probability cubes (left and middle); and the corresponding litho-

facies model (right).
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Fig. 5 2D view of the reservoir probability map and corresponding litho-facies model; correspond-
ing deformations of the assignation diagram are depicted on the right.

The assignation diagram is then updated according to algorithm described in
Section 3 to verify any given set of proportions.

This approach has been successfully applied for the geostatistical modelling of
lithofacies on a complex mixed carbonated reservoir in Western Africa. Due to the
high number of lithofacies and to the complexitity of the relationship between these
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lithofacies, a usual truncated plurigaussian approach was not possible. Our non-
parametric approach offered the flexibility to define complex facies contacts through
the design of the assignation diagram shown in Figure 3.
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Appendix
Let us define

S=Y (®(a) —m)* = (P(a) —x) (P(a) — ) @

M=

k

the quadratic deviation between the target proportions & and the proportions ob-
tained after assignation of the functions a; f (u).

A Gauss-Newton algorithm is an iterative algorithm in which, at iteration s, the
vector a®®) is modified in the direction of the gradient at p(‘*) = @(a(“)), with an
increment A related to the local curvature. The first order Taylor expansion of &
around the solution is

®(a) ~P(a”))+JA,

where J is the Jacobian matrix with element

JdPi(a)

)
8aj

Jij = ij=1,....K. 8)

It is then straightforward to show that the gradient S is
g=VS=2J) (®P(a)—m)

with ith component

0P (a
,—22@ 8a,

Nocedal and Wright (1999) showed that the optimal step is

A=-H'g=-H'JpY —m)=-H'J(®a")-n), )

where H is the Hessian matrix of @ with element (i, j):

dPy(a) dPy(a) J>Py(a) L
1122< 9 361/ JF((Dk(a)*ﬂk)W , i,j=1,....K.

First and second order derivatives are evaluated numerically. At each step, this

would in theory require K(K + 1) call to the truncation function @, which is pro-

hibitively too slow if there is more than a very few lithofacies. The Gauss-Newton

algorithm amounts to approximate the Hessian by ignoring the second order deriva-

tives:

LS 0 (Pk 8cbk(a)
da; da;

H~ 2 =JI (10)

This approximation is exact when @ is linear, which is not the case here. However,
on simulations not reported here, close to linear variations of @ (a) with respect to
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a could be observed, except at some specific locations where small variations in the
input variables leads to very high variations of the output variable. With this approx-
imation, it is only necessary to compute numerically the Jacobian matrix J. A further
approximation consists in approximating the gradient by only computing the deriva-
tives in the N directions with the highest difference between the target proportion
and the current output proportions. The Levenberg-Marquardt (Marquardt, 1963)
algorithm then consists in adding a regularization term. We thus finally consider the
matrix

H=2(J'J+Alg), (an

where Ik is the identity matrix of dimension K at A is the Marquardt regularization
factor. We finally get that

altl) = %(JIJ-i-}—IK)_lJ[(‘p(a(S)) —7). (12)

Iterations are stopped when S is less than pre-specified value, €.

Derivatives are computed numerically:
0®;(a)/day ~ (Pi(a’) — P(a))/d. (13)

In the direction k, the outpout proportions are computed for the vector a’ with ) =
ar+0 and d; =a;—8/(K —1), for j # k. The approximate derivative is then

d®i(a)/da; ~ (Bi(a') — D(a))/d. (14)

On all tested situations, we found N = 3 to be enough to ensure convergence. In-
creasing N was found to be, on average, unncessary because the decreasing number
of iterations does not compensate for the increasing number of calls to the trunca-
tion routine when evaluating the gradient. The algorithm is not very sensitive to A.
It was found that A = 1 provides good and fast convergence.



