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Abstract In reservoir characterisation is has become common practice to define a
facies model by fitting a model to one or more training images. Particularly multi-
point statistics models are popular. Then node values are simulated sequentially in
a random order and conditional distributions for one node value given the previous
ones are estimated from the training image(s). This is often combined with a multi-
grid approach. In the present paper we focus on binary training images and consider
a simplified variant of the multi-point statistics framework. We simulate the node
values sequentially in a fixed order and do not include the multi-grid idea. The re-
sulting model is a (higher-order) Markov chain and corresponding theory can be
used to understand the properties of the fitted model. In particular the Markov chain
is in general not stationary, from which it follows for example that the marginal
probabilities vary spatially. This is clearly an unwanted property and we discuss sev-
eral strategies for coping with the problem. One should note that by restricting us to
a fixed simulation order we obtain explicit expressions for the probability distribu-
tion of the fitted model, which makes it easy to define a corresponding conditional
distribution when observed data are available.

1 Introduction

To model the spatial facies distribution in reservoirs it has become common prac-
tice to fit a chosen model class to one or several training images. Different classes of
models can be used for this purpose. Various multi-point statistics models (Strebelle,
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2002; Journel and Zhang, 2006) are frequently considered, but other possibilities
that have been used include Markov mesh models (Stien and Kolbjørnsen, 2011)
and Markov random fields (Tjelmeland, 1997; Toftaker and Tjelmeland, 2012a). In
multi-point statistics (MPS) models the node values are simulated in a random or-
der and the conditional distributions for one node value given the values previously
simulated in nearby locations are estimated from the training image(s). With this
strategy the number of model parameters to estimate may become huge and thereby
over-fitting may become a problem. Another potential problem with the MPS mod-
elling strategy is that there is no way to ensure that the fitted model is stationary.
The third, and perhaps most serious, problem is that we have no closed form, easy
to evaluate, formula for the probability distribution of a fitted model. Whether or not
the latter is a problem depends on what you want to use the MPS model for. MPS
is an algorithmically defined model, and as a consequence unconditional simulation
from a fitted model is straight forward. If this is all you want to use the fitted model
for, the lack of an easy to evaluate formula for the probability distribution represent
no problem. If, however, you want to generate also conditional realisations from the
fitted model given some observed values, it is not clear how to construct a simulation
algorithm that simulates consistent with the induced conditional distribution.

There are serious theoretical and practical problems associated also with the
Markov mesh and Markov random field models. The Markov mesh models, and
more general partially order Markov models (Cressie and Davidson, 1998), simu-
lates the node values in a fixed order. As a result an easy to evaluate closed form
expression is available for the fitted probability distribution, so it is always possi-
ble to construct a Metropolis–Hastings algorithm (Gamerman, 1997; Brooks et al.,
2011) that simulates from a corresponding conditional distribution. However, just
as for MPS models there is no easy way to ensure that the fitted model is stationary.
Unconditional realisations often show high correlations in certain directions that
are not present in the training image, but is a result of the fixed simulation order.
Moreover, the fraction of the various facies in unconditional realisations is often not
consistent with corresponding figures in the training image. Markov random fields
have very nice theoretical properties. Except for a border effect it is easy to ensure
that the fitted model is stationary, and except for a normalising constant an easy to
evaluate expression is available for the probability distribution of the fitted model.
Just as for Markov mesh models it is easy to construct a Metropolis–Hastings al-
gorithm that simulates from a corresponding conditional distribution. The problem
with Markov random fields, however, is that the formulation includes a computa-
tionally intractable normalising constant. This represent no problem for conditional
simulation, but is a major problem in the model fitting phase. Possible strategies for
model fitting have been suggested, but typically to a computationally high price. The
possibilities include estimating the normalising constant via Markov chain Monte
Carlo (Geyer and Thompson, 1995; Gelman and Meng, 1998; Gu and Zhu, 2001),
replacing the need to evaluate the normalising constant with exact sampling (Møller
et al., 2006), and replacing the normalising constant with a corresponding approxi-
mation (Austad and Tjelmeland, 2011; Tjelmeland and Austad, 2012).
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In the present paper we limit the attention to binary fields and study models that
simulate the node values in a specific fixed order. As such it is a Markov mesh model
and a partially order Markov model. We consider the simulated values as a Markov
chain and are thereby able to study the stationarity properties of the model. We
first consider a rather naı̈ve modelling strategy, which has clear similarities to the
way MPS and Markov mesh models are defined, and we discuss why the resulting
model is non-stationary. Thereafter we discuss different strategies for ensuring that
the fitted model becomes stationary. Toftaker and Tjelmeland (2012b) give a more
detailed treatment of the models discussed here.

2 The naı̈ve approach

Assume we have an n×m rectangular lattice and let S = {(i, j); i = 1, . . . ,n, j =
1, . . . ,m} be the set of nodes. To each node (i, j) we associate a binary variable
xi j ∈ {0,1}. We use the notations x= (xi j,(i, j)∈ S) and xA = (xi j,(i, j)∈A) for A⊆
S, and xa:b,c:d = x{(i, j),a≤i≤b,c≤ j≤d}, xa,c:d = x{(a, j),c≤ j≤d} and xa:b,c = x{(i,c),a≤i≤b}
for a,b ∈ {1, . . . ,n}, c,d ∈ {1, . . . ,m} when a < b and c < d. Our goal is to fit
a distribution p(x) to a given training image x0. We let p(x) be defined from a
distribution π(xT ) on a very small q× r lattice T = {(i, j), i = 1, . . .q,r = 1, . . . ,r}.
Typically q and r will equal two, three or four. Clearly π(xT ) is specified by 2qr

non-negative probabilities that sum to one. We define p(x) from π(xT ) as follows.
First we let

p(xT ) = π(xT ). (1)

We assume x1:q, j, j = r+1, . . . ,m to be a (q−1)th order Markov where the transition
probabilities p(x1:q, j|x1:q, j−r+1: j−1) are defined from π(·) as the conditional distri-
bution of the last row given the first r−1 rows. This defines a distribution p(x1:q,1:m)
and thereby also a corresponding conditional distribution p(xq,1:m|x1:q−1,q:m). We
assume also xi,1:m, i = q+1, . . . ,n to be a Markov chain and let the transition prob-
abilities of this Markov chain be given by p(xq,1:m|x1:q−1,q:m). This completes the
definition of p(x).

One should note that it is straight forward to simulate from p(x) and it is also
easy to evaluate p(x) for a given x. The evaluation and simulation of the first q
rows includes only low dimensional distributions and the conditional distribution
p(xq,1:m|x1:q−1,q:m) is a one dimensional Markov random field and can be numeri-
cally handled by the so called forward-backward algorithm, see for example Scott
(2002).

The distribution π(xT ) must be estimated from the training image, and different
alternatives exist for this. The simplest alternative (i) is perhaps just to let π(xT )
equal the frequency of the block xT in the training image. A variant of this proce-
dure is (ii) to give a small positive probability also to configurations xT that does
not appear in the training image. An alternative estimation procedure is (iii) to con-
sider the training image as an observed realisation from p(x) and estimate π(xT ) by
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maximum likelihood. In Figure 1 we show, for three different training images, reali-
sations from the fitted model when q= r = 2, when q= r = 3 and when q= 4,r = 3,
and defining π(xT ) by alternative (ii). We can observe that this very simple mod-

Training images

Unconditional realisations from fitted models

Fig. 1 The naı̈ve approach: The three training images (upper row) and for each of these realisations
from a fitted p(x) when q = r = 2 (second row), q = r = 3 (third row) and q = 4,r = 3 (lower row).

elling strategy is capturing a lot of the characteristics of the training images, at least
when q = r = 3 or q = 4,r = 3. However, it is also easy to identify characteristics
of the training images that are not reproduced in the fitted models. First, the reali-
sations in the middle and right columns for the q = 4,r = 3 case contains artifacts
where the fitted model seems to have lost all memory of the training image. This
effect occurs frequently in the realisations from the model. After a closer inspection
of the training images and realisations we also see that the fraction of white and
black in the training image is not reproduced in the fitted model. For example, in the
realisations from q = r = 3 and q = 4,r = 3 in the right column there are much too
many channels.
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What is the reasons for the shortcomings of the fitted models? The p(x) is es-
sentially defined by two Markov chains where the transition probabilities are given
from π(xT ). From the way these Markov chains are constructed they will typically
not be stationary. The two Markov chains have corresponding limiting distributions,
but these will typically not be as we expect from the estimated π(xT ). One should
note that one should expect the same effect in MPS models. The introduction of a
random simulation order and a multi-grid framework perhaps reduce the effect of the
non-stationarity, and certainly makes the model less easy to analyse, but there is no
reason to believe that the effect is eliminated. It should also be noted that estimating
π(xT ) in our model formulation by maximum likelihood will not generate stationary
Markov chains. Another aspect of our model formulation that should worry us is the
number of parameters, which is 2qr− 1 = 4 095 when q = 4, r = 3, the minus one
coming from the restriction ∑xT π(xT ) = 1. The very high number of parameters re-
sults in overfitting and thereby in the areas in the realisations where the fitted model
appear to have lost all memory of the training image. In the next sections we discuss
two strategies for dealing with the non-stationarity and also consider one possibility
for how to reduce the number of parameters.

3 A stationary variant of the naı̈ve approach

The distribution p(x) defined in Section 2 is defined via π(xT ) and two Markov
chains. An “obvious” way to make p(x) stationary is to restrict the distribution
π(xT ) to be such that the two Markov chains become stationary. It is reasonably
easy to see that the first Markov chain, defining p(x1:q,1:m), is stationary if and only if
π(xT ) is such that the corresponding marginal distribution of the first r−1 columns
equals the marginal distribution of the last r−1 columns. Thus, mathematically the
requirement is that

∑
x1:q,1

π([x1:q,1,x1:q,2:r]) = ∑
x1:q,r+1

π([x1:q,2:r,x1:q,r+1]) for all x1:q,2:r. (2)

It is less easy to find sufficient conditions for π(xT ) that ensures that the second
Markov chain is stationary. A necessary condition is clearly the corresponding re-
quirement as (2) for rows, i.e.

∑
x1,1:r

π

([
x1,1:r

x2:q,1:r

])
= ∑

xq+1,1:r

π

([
x2:q,1:r
xq+1,1:r

])
for all x2:q,1r. (3)

In Toftaker and Tjelmeland (2012b) it is shown that sufficient conditions for the
second Markov chain to be stationary is (3) and the following two conditional inde-
pendence assumption for π(xT ),

x1,1:r−1 ⊥ x2:q,r|x2:q,1:r−1 and xq,1:r−1 ⊥ x1:q−1,r|x1:q−1,1:r−1. (4)
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These conditional independence assumptions are illustrated in Figure 2. The vari-

Fig. 2 Illustration of the conditional independence assumptions in (4).The variables associated
with the nodes in one of the two gray blocks are assumed conditionally independent of the variables
associated to the nodes in the other grey block given variables associated to the nodes in the block
coloured black.

ables associated with the nodes in one of the two gray blocks are assumed condi-
tionally independent of the variables associated to the nodes in the other grey block
given variables associated to the nodes in the block coloured black.

To fit a stationary model p(x) to a training image we follow a modified version
of strategy (ii) discussed in Section 2. We consider all q× r blocks in the train-
ing image as independent observations from π(xT ) and maximise numerically the
corresponding likelihood under the restrictions given by (2), (3) and (4). For each
of the three training images in Figure 1, Figure 3 shows one realisation from the

Fig. 3 A stationary model: For each of the three training images in Figure 1, one realisation from
a fitted p(x) when q = r = 3 and the restrictions in (2), (3) and (4) are enforced.

corresponding fitted p(x) when q = r = 3. By construction the fitted models are
stationary. From the fitted π(xT ) one can easily compute the expected fraction of
each facies and it is very close to the corresponding observed figures in the training
images. The realisations in Figure 3, however, clearly reveal that restrictions (2), (3)
and (4) are far too restrictive to allow reproduction of the characteristics of the three
training images.

4 Defining the model component on a cylinder

In this section we consider a model specification procedure that is slightly modi-
fied relative to what we discuss in Section 2. In stead of starting with π(xT ) for a
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small q× r block we start by specifying π(xR) for a q×n strip, i.e. R = {(i, j), i =
1, . . . ,q,r = 1, . . . ,n}, and set

p(xR) = π(xR). (5)

From p(xR) we define p(x) exactly as discussed in Section 2. To ensure that the
associated Markov chain is stationary we must have a restriction on π(xT ) corre-
sponding to the one in (3). More precisely we must have

∑
x1,1:n

π

([
x1,1:n

x2:q,1:n

])
= ∑

xq+1,1:n

π

([
x2:q,1:n
xq+1,1:n

])
for all x2:q,1:n. (6)

To ensure this property we first define a Markov random field on a cylinder that
is n nodes long and have s ≥ q nodes around. We define the Markov random field
to have rectangular cliques of size q× r and make the distribution of the Markov
random field invariant under rotations around the cylinder by assuming the potential
function of all such cliques to be equal. We define π(xR) to be equal to a q× n
section of the cylinder. Thus, we find π(xR) by marginalising over the remaining
(s− q)× n nodes. This marginalisation operation is computationally intensive and
limit the values of s and r that can be used to define the model.

To fit a model to a training image we consider all q× n strips in the training
image to be independent observations from π(xR) and maximise the corresponding
likelihood. For each of the three training images in Figure 1, Figure 4 shows three
realisations from the corresponding fitted p(x) when q = 3, s = 5 and r = 3. To
avoid overfitting we include only interactions up the fourth order in the model. This
results in a model with 158 parameters. We have found the fitting to be the best if
we fit the model to a transposed version of the training images, and this is what is
shown in the figure.

From the realisations we can observe that the fitted model captures well the char-
acteristics of the leftmost training image, whereas the black objects in the realisa-
tions in the middle column is somewhat larger than in the corresponding training
image. The fitted model is not at all able to reproduce the channel structures of
the rightmost training image. A more detail analysis of the fitted models, and fitted
models for other values of q, r and s can again be found in Toftaker and Tjelmeland
(2012b).

5 The naı̈ve approach with a reduced parameter set

To avoid the overfitting observed in Section 2, we define a model where only in-
teractions up to order t are included. We fit the model by maximum likelihood as
mentioned in fitting alternative (iii) in Section 2. The resulting p(x) will still be non-
stationary, so the best would be to define the model p(x) on a larger lattice and fit the
training image to the essentially stationary part in the middle of the lattice. However,
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Training images

Unconditional realisations from fitted models

Fig. 4 The cylinder model: The three training images (upper row), and for each of these three
realisations from the fitted p(x) when q = 3, s = 5 and r = 3.

this is computationally somewhat more complicated to handle, so we have not im-
plemented this variant yet. Figure 5 shows realisations from the fitted model when
q = 4, r = 3 and t = 4, which gave a model with 793 parameters. We can observe
that fitted models capture very well the characteristics of the two training images
on each side, whereas the black objects in the realisations in the middle column are
also here too large compared to corresponding objects in the training image. In par-
ticular we can for all the realisations observe that they include no artifacts resulting
from overfitting as we observed in the realisations in Figure 1. We have also studied
a much larger number of realisations from the fitted models without finding any in-
stances of such artifacts, so to limit the interaction order as we have done seem to be
a reasonable strategy to avoid overfitting. To fit successfully a model to the training
image in the middle column, however, it seems necessary to include interactions of
higher order than four. Again a more detailed study of the fitting procedure can be
found in Toftaker and Tjelmeland (2012b).
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Training images

Unconditional realisations from fitted models

Fig. 5 The naive model with a reduced parameter set: The three training images (upper row), and
for each of these three realisations from the fitted model when q = 4, r = 3 and the interactions up
to order t = 4 are included in the model.

6 Closing remarks

Inspired by the multi-point statistics formulation we have defined and explored sev-
eral model formulations that can be fitted to one or more training images. We have
limited the attention to models where it is easy to calculate the probability of a reali-
sation as then the corresponding conditional model given some data and a likelihood
is immediately defined.

Our simulation results presented above can of course first of all be used to evalu-
ate the model formulations we have proposed. However, the results can also be used
to improve our understanding of the properties of the MPS model. Given the simu-
lation order the MPS model is just as our models defined as a Markov chain. Just as
our models in Sections 2 and 5 there is nothing in the model formulation ensuring
this Markov chain to be stationary. Moreover, as we saw for our model in Sec-
tion 2, estimating the model parameters from the frequency of configurations in the
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training image can perfectly well result in a Markov chain where, for example, the
marginal distribution of the limiting distribution is significantly different from what
is observed in the training image. We can see no reason why including a random
simulation order or a multi-grid should change this situation. Another problematic
part of the MPS formulation is the number of parameters that have to be estimated.
One should note that the Markov mesh model and partially ordered Markov model
formulations also define the model via a Markov chain, so the situation is the same
for such models. Our simulations in Section 2 also show another problematic side
with the MPS formulation, namely the very high number of parameters in the model
which may result in unwanted properties in the fitted model.

Our models defined in Sections 2 and 3 are clearly not useful for model fitting.
The formulation in Section 4 may be useful for larger values of q, r and s, but the
model fitting process will then be computationally very expensive. We think our
formulation in Section 5, preferably defined on a larger lattice than the training
image as discussed in Section 5, is useful and a better alternative than both MPS
and Markov random fields. However, more consideration should be given to how to
parameterise the model, preferably both the number of parameters and which pa-
rameters to include in the model should be decided as part of the estimation process
and not apriori defined as we have done here. Moreover, the model is only com-
putationally feasible in the 2D situation. A corresponding 3D model can easily be
defined but is not computationally feasible.
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