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Abstract Locating new wind farms is of crucial importance for energy policies of
the next decade. To select the new location, an accurate picture of the wind fields
is necessary. However, characterizing wind fields is a difficult task, since the phe-
nomenon is highly nonlinear and related to complex topographical features. In this
paper, we propose both a nonparametric model to estimate wind speed at different
time instants and a procedure to discover underrepresented topographic conditions,
where new measuring stations could be added. Compared to space filling techniques,
this last approach privileges optimization of the output space, thus locating new po-
tential measuring sites through the uncertainty of the model itself.

1 Introduction

This paper describes a novel computational approach of monitoring network op-
timization and its application to a problem of wind power plants sites evaluation.
In this complex spatial decision making process it is essential to build a model for
the estimation of wind speeds and their constancy over time. Geostatistical mod-
els are often used to assess these properties from meteorological data to assemble
wind power capacity atlases. However they often rely on incomplete information
and insufficient number of measuring stations, especially in mountainous regions
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of complex topographies. They also require various corrections to account for the
influence of topography on wind speeds.

In this study we apply a methodology based on support vector machines (SVM [1])
to assess the areas of interest for wind power plants construction in Switzerland from
the interpolation of monthly average wind speed data. The model incorporates a rich
set of topographical indices as explanatory input variables (see Table 1). With this
procedure, we produce a spatial map of average wind speeds on the Swiss territory,
which helps assessing the suitability for the construction of new plants.

To enhance the accuracy of this map by taking of additional measurements, one
has to consider the monitoring network optimization as an exploration of the high-
dimensional space of combined geographical and topographical variables. We de-
fine an active learning criterion [2, 3, 4] to achieve this goal and target the explo-
ration at uncertain areas close to the decision threshold for power plants construc-
tion [5]. Network design can be willingly biased towards the areas at risk of the
phenomenon to be modeled, in our case average the wind speeds of about 4.5 [m/s]
at a height of 50 [m] over the ground, which is the minimum monthly average wind
speed required by the Swiss law for the expediency of a power plant facility con-
struction.

Using this criterion, we study the topographical features of the Swiss territory in
terms of interest for a new monitoring station. We pay particular attention to sites
capable to improve the accuracy of wind speed models in the areas of maximal
uncertainty around the decision threshold of 4.5 [m/s]. With this study, we extract
topographical conditions leading to model uncertainty and to extract possible loca-
tions of interest for new monitoring stations.

2 Predicting suitable areas for wind farms

We are interested in predicting two quantities: on the one hand, wind speed at a
height of 50 [m] over the ground and on the other hand persistence of the wind over
time.

For the first problem, we converted the prediction problem into a classification
problem: since we were interested only in the meeting of the specific threshold of
4.5 [m/s], we recoded the recorded wind speed into a positive class (+1) when the
threshold was met and a negative class (0) otherwise. We extrapolated the average
monthly wind speed at 50 [m], s̄50, from the average speed measured at 10 [m] by
the sensor, s̄10, using the following relationship:

s̄50 = s̄10 ∗
ln( 50

0.1 )

ln( 10
0.1 )

= s̄10 ∗1.3495 (1)

where 0.1 is the average roughness length in Switzerland (see Swiss Bylaw on
Energy).
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Fig. 1 Swiss sensor network used in this study and corresponding DEM RIMINI at 250 [m] cell
resolution.

We then trained a non parametric model based on SVM [1], which is a robust
method for data classification. As input space, we used the variables detailed in
Table 1. The model was trained on data coming from the monitoring stations of
the Swiss sensor network and was used to predict each cell of the RIMINI digital
elevation model (see Fig. 1). This way, we predicted for each month the suitability
of swiss territory for wind farm development.

For the second problem, we considered prediction maps produced separately for
each month of the period 2003-2008 and averaged out the prediction (see Fig. 2)
over the 72 models. This way, we track the persistence of winds and retrieve it as
a probability to exceed the 4.5 [m/s] threshold. Next section details the selection
procedure.

Table 1 Topographic features considered in the study

Number Symbol Type Description Modality

1−2 [X, Y] Spatial coor-
dinates

Location of the samplea

3 [Z] Altitude Altitude of the samplea

4−6 [DoG] Difference of
Gaussians

Substraction of two smoothed
DEMs, describes convexity of
terrain

Small / Medium / Large

7−9 [Slope] Slope Norm of terrain gradient, de-
scribe slopes of terrain

Small / Medium / Large

10−13 [DD] Directional
derivatives

highlight natural topographical
obstacles that break wind

NorthSouth, EastWest
at Small and Medium
scales

a Monitoring station or pixel extracted by DEM.
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Fig. 2 Average 2003-2008 prediction map. In white, areas always meeting the 4.5 [m/s] threshold.
In black, areas unsuitable for wind farming.

3 Identifying critical topographic conditions for new monitoring
stations

In order to improve the decision map of Fig. 2, new measurement stations could
be added to the current sensor network. A possibility would be to add stations in
areas that are not sampled, in a geographical space filling perspective [6, 7]. In this
paper, we aim at filling the output space in areas that are the most uncertain for the
current model. To do so, we assess the uncertainity of the committee of 72 SVM
models (one per month) by evaluating the decision functions of the single models
on each point of the grid.

A sample predicted with a value of the decision function between 0 and 1 can
be considered as uncertain, since it falls within the separating hyperplane of the
SVM [1]. In [8], this property was exploited to design a criterion to rank samples by
their uncertainty and possible contribution to the model, an active learning criterion.
Broadly speaking, we are not interested by adding samples that the model can easily
classify into windy or calm. On the contrary, if a sample has a decision function
between 0 and 1, it means that the current model still classifies it in one of the two
classes, but with little confidence. Following this intuition, we can state that adding
this sample to the current training set will be beneficial for the improvement of the
model, as it will disclose a part of the input space (of the topographic conditions)
that is currently not well handled.

Figure 3 illustrates the mode of the decision function for the 72 months: the areas
in dark tones are those of reduced confidence in the class assignment, i.e. the areas
where the mean speed is often very close to 4.5 [m/s].

With this knowledge we analyzed the specific topographic conditions of the un-
certain areas. Due to the high complexity of the features at these uncertain loca-
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Fig. 3 Mode of the decision functions of the 72 SVM classifiers. In dark tones, ares of persistent
uncertainty.

tions we extracted general trends from the data using principal component analysis
(PCA). PCA is applied only to the data within the SVM margin (| f (x)| < 1) to
extract the components of maximal variance and then analyze the behavior of the
features in the maximal variance directions. In our setting, a maximal variance di-
rection can be interpreted as a linear combination of terrain features explaining the
topographic conditions representative of the SVM uncertain predictions shown in
dark tones in Fig. 3. Being a combination of terrain features, it accounts for many
of them at the same time, providing an useful visualization tool for uncertain topo-
graphical conditions.

Figure 4 illustrates the results of this visualization for the two most informative
components. The first, accounting for 23% of the variance, concentrates spatially
uncertain topographic conditions related to high altitude and strong slope, while the
second, accounting for 18% of the variance, accounts for strong directional deriva-
tives at high elevation. Together, these two maps can be used to plan the localization
of new sensors specialized in the estimation of winds.

4 Conclusion

In this study, we assessed the suitability of machine learning algorithms for the
assessment of renewable energy potential. We considered wind power, which is one
of the most suitable and promising resources for the green-energy policy of the
near future in Switzerland. Multitemporal analysis was carried out for the search of
potential sites for wind power farms. The integration of topographical information
showed desirable properties and led to a multitemporal mapping of the suitability of



6 D. Tuia, A. Pozdnoukhov, M. Kanevski

First principal component Second principal component

Fig. 4 First two principal components of the uncertain areas in dark tones in Fig. 3.

the territory for wind farming. To increase confidence in the estimation, the design
of the weather monitoring network was analyzed and a feedback loop using active
learning was designed to detecting potential new measurements sites on the areas
of uncertainty of the model. The results showed a clear underrepresentativeness of
topographical information related to exposition and slope.
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