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Abstract In mineral resource evaluation a careful analysis and assessments of the
geology, assay data and structural data is performed. One critical question is where
to position the exploration boreholes that render it possible to classify as much of the
deposit as possible as a measured or indicated resource. Another important question
is what method to use when analyzing the grade in the collected material. For the de-
posit we consider, a challenge is to assess whether one should analyze the collected
core samples with accurate and expensive XRF equipment or the less accurate and
less expensive XMET equipment. A dataset of 1,871 XMET and 103 XRF observa-
tions is available, along with relevant explanatory variables. At the 103 sites where
XRF data is acquired, 103 XMET measurements are also available. We first derive
estimates of the regression and covariance parameters of a Gaussian random field
model for the log XMET and log XRF data. Next, the model is usedto predict the
decisive grade parameter on block support. To improve the predictions, the mining
company has planned to drill and collect 265 core samples along new boreholes.
The associated reduction in prediction variance, with XRF or XMET data collec-
tion, is studied. Moreover, we compute the value of the XRF orXMET information
using the statistical model, the expected development costs and revenues. The value
of information is a useful diagnostic here, comparing the actual price of the XRF or
XMET data with its added value.

Steinar L. Ellefmo
Department of Geology and Mineral Resources Engineering, NTNU, Norway

Jo Eidsvik
Department of Mathematical Sciences, NTNU, Norway, e-mail: joeid@math.ntnu.no

Ninth International Geostatistics Congress, Oslo, Norway, June 11. – 15., 2012



2 Steinar L. Ellefmo and Jo Eidsvik

1 Introduction

We analyze spatial data from a deposit in Norway. The main oremineral is a par-
ticular oxide, and several exploration boreholes have beendrilled to understand the
spatial distribution of this mineral. The currently available data consist of about two
thousand observations of the oxide along the boreholes. Thedeposit is still under
consideration for mining, and the main purpose with this methodological paper is to
evaluate different strategies for collecting more data. See also Eidsvik and Ellefmo
(2012).

The oxide has been measured on crushed core samples using either a X-ray fluo-
rescence (XRF) spectrometer in the laboratory or a portableX-ray meter (XMET).
The XRF data are considered to be exact measurements of the oxide, providing
perfect information at the locations where they are made. The analysis procedure
is time consuming. The XMET data are considered to be a noisy observation of
the true oxide level, providing imperfect information. These data are acquired more
time efficiently and at a lower cost than the XRF data. We incorporate spatial de-
pendence in the oxide by a Gaussian geostatistical model, and model the true oxide
as a Gaussian random field.

In the mining industry resources are classified into measured, indicated or in-
ferred, depending on the level of uncertainty. This is formalized through the JORC
code. Since every deposit is unique, the assessment includes multiple levels of ge-
ological information, assay data, and structural data. From a more methodological
viewpoint, we discuss several evaluation criteria in our context, computed at a set
of resource blocks. The criteria are the reduction of the marginal variances, the in-
crease in slope and correlation, the decrease in weight of the mean (Rivoirard, 1987)
and the reduction of entropy. By todays standards the final classification is done by
competent persons based on these criteria, and several other case-specific criteria.

We also use the value of information (VOI) to study the potential of the different
data collection schemes. The VOI relates the probabilisticmodel to the decision,
using monetary units explicitly (Bhattacharjya et al., 2010).

2 Notation and data description

The deposit is about 2.5 km long, and is an intensively foldedand lens formed body
surrounded by mafic-felsic rocks. Geologists have defined three categories with in-
creasing degree of mineralization. The classes are termed class 1, class 2 and class
3. Class 3 has the highest average oxide levels. The class 3 and class 2 categories are
dominating in the central parts of the ore. The degree of mineralization is used as
covariates in our analysis. We observe the oxide by XMET or XRF data acquired in
boreholes. The laboratory XRF-data have been obtained from10 meter long crushed
sections (halves) of the core. The hand-held XMET data have been collected for
every 25 cm of the core before crushing and aggregated into 10meter long XMET-
composites in correspondance with the XRF-analyses. Thereare 103 sites of XRF
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data and 1871 sites of XMET data. The 103 locations with XRF data are also mea-
sured with XMET data. Therefore, this represents a partially heterotopic sampling
scheme.

Figure 1 (left) displays histograms of the oxide data collected with XMET (top)
and XRF (bottom), while Figure 1 (right) shows a crossplot ofthe 103 (XRF,
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Fig. 1 Left: Histogram of XMET (top) and XRF (bottom) observations. The oxide content ranges
from 0.39 to 7.40 percent for XMET with a mean of 2.95. For XRF the range is from 0.56 to 5.14,
with a mean of 3.80. Right: The XMET data (second axis) plotted against the XRF data (first axis)
at 103 common sites.

XMET) measurement pairs. The degree of mineralization at the measurement lo-
cation is also indicated in the figure: class 1 (o), class 2 (.)and class 3 (+). The
highest measurements of the oxide are typically collected at locations with class 3
covariates. For the XRF histogram in Figure 1 (left, bottom)we might notice modes
representing the different classes, but there is much variability within each class.

We next fit a joint geostatistical model for the XRF and XMET data. The XRF
response (y1(s)) and XMET response (y2(s)) at a (north, east, depth) locations are
modeled by

y1(s) = x(s), y2(s) = x(s)+N(0,τ2). (1)

The collection of XRF and XMET data is denoted byy = (yt
1,y

t
2), where

y1 = (y1(s1,1), . . . ,y1(s1,103))
t , y2 = (y2(s2,1), . . . ,y2(s2,1871))

t .

Here, the true oxide at the (north, east, depth) locations is denotedx(s). The XRF
data provides perfect information about oxide at the location, while the XMET data
is imperfect information of oxide with measurement noise varianceτ2. The noise
terms of the XMET observations are assumed to be independentfrom one loca-
tion to another. We model the oxide as a Gaussian random field with expected



4 Steinar L. Ellefmo and Jo Eidsvik

value µx(s) = ht(s)β , whereht(s) includes a constant term and the mineraliza-
tion covariate at sites, and β = (β1,β2)

t is a regression parameter. We choose
a Matern covariance model to describe the spatial covariance structure of oxide:
Cov(x(s),x(s′)) = σ2(1+ φh)exp(−φh) for distanceh = ||s− s′||. Then the vari-
ance isσ2, andφ indicates the strength of spatial correlation.

Note that both datatypes are used together, in a joint Gaussian model, to predict
the oxide grade at all spatial locations. Not dissimilar to what is typically done in
cokriging, the current dataset and the joint modeling allows us to estimate the pa-
rameters and predict the grade in a unified way. The model parameters are assessed
by maximum likelihood using the current XRF and XMET data.

3 Information criteria

The deposit in question can potentially be mined in an open pit, possibly going
underground at a later stage. The decisions about opening the mine and choosing
mining strategies depend on many modifying factors. We focus on quantitative ap-
proaches based on the geostatistical modeling. In particular we study the following
criteria with only current data and with additional borehole XRF or XMET data:

• Kriging variance
• Slope and correlation of grade
• Weight of the mean grade
• Entropy
• Value of information

A resource will be classified into the different categories by a competent person.
She or he is a member of a recognized professional organization and has sufficient
relevant experience. The classification will be done based on a detailed understand-
ing of the mineralization and on uncertainty indicators. What indicators to use are
deposit specific and in practice the choice of the competent person, and we will not
try to draw any conclusions here.

We define 3740 resource blocks of size 203 m3 inside a possible pit where we pre-
dict the oxide grade. The oxide grade in a block is denotedx=(x(s0,1), . . . ,x(s0,nb))

t ,
wherenb = 64 is the block discretization in our case. The final grade estimate in a
block is the average of thenb in-block estimates.

The mining company considers acquiring more XRF or XMET data. About 20
new boreholes have been planned, giving 265 additional measurements of either
XRF or XMET data. We denote this new data byz = (z(sz,1), . . . ,z(sz,265))

t .
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3.1 Spatial prediction and prediction variance

The joint distribution of oxidex, planned dataz, and current datay is Gaussian.
From the joint model we can compute the conditional mean ofx andz given current
datay is

µx|y = Hxβ̂ +Cx,yC
−1
y (y−Hyβ̂ ), µz|y = Hzβ̂ +Ct

y,zC
−1
y (y−Hyβ̂), (2)

where we simply plug in the regression parameter estimateβ̂ . Moreover,C with
subscripts indicate the fitted covariance or cross-covariance betweenx, y or z. When
we write out the regression parameterβ̂ as a function of the datay, we get

µx|y =
(

Mx,ySyHt
y +Cx,y

)

C−1
y y, µz|y =

(

Mz,ySyHt
y +Ct

y,z

)

C−1
y y, (3)

whereMx,y = Hx −Cx,yC−1
y Hy andMz,y = Hz −Ct

y,zC
−1
y Hy, andH with subscripts

indicate the matrix of explanatory variables.
Under the Gaussian modeling assumptions, the kriging predictor in (3) is optimal,

i.e. the unbiased predictor with minimum variance. We can easily account for the
uncertainty in the regression parametersβ̂ . The resulting conditional covariance
expressions are

Cx|y =Cx −Cx,yC
−1
y Ct

x,y +Mx,ySyMt
x,y, Cz|y =Cz−Ct

y,zC
−1
y Cy,z+Mz,ySyMt

z,y, (4)

where the last terms withMx,y, Mz,y and the variance of̂β given bySy compensate
for the increased variability caused by estimatingβ .

Let the average block grade be ¯x = ∑i xi/nb. We denote the Gaussian density of ¯x
giveny by π(x̄|y) =N(µx̄|y,Cx̄|y). This is computed for every resource block, and we
define Stdy as the length 3740 vector of Kriging standard errors (

√

Cx̄|y), conditional
on the current datay.

The procedures can be extended to include both current datay andz. The condi-
tional mean ofx, given both data, is

µx|yz = µx|y +Cx,z|yC
−1
z|y (z− µz|y), (5)

whereCx,z|y is the covariance ofx and z, given y. Just like in the situation with
only current datay, we define Stdyz as the Kriging standard errors of average block
grades, now given bothy andz data. The reduction in prediction variance depends
on the locations of the new observationsz, relative to each other, and to the current
datay and the resource blocksx. Collecting XRF data in the planned boreholes
provides a larger reduction in prediction variance than with XMET, but in general
the uncertainty reduction is a complicated function of the covariance parameters.
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3.2 Slope, correlation and weight of the mean

Rivoirard (1987) uses the regression between the predictedand true block grades,
called the slope, to assess the effects of different Krigingneighborhoods. This cri-
terion has also been used to quantify the degree of measured or indicated resources
in mining. For each resource block we have

Slopey = Cov(x̄,µx̄|y)/Var(µx̄|y) = (wtGx,yC
−1
y Ct

x,yw)/(wtGx,yC
−1
y Gt

x,yw), (6)

wherewt = 1t/nb and 1 is a vector of ones. Moreover,Gx,y = Mx,ySyHt
y +Cx,y is

recognized in (3). The correlation is a normalized version of the slope;

Corry = Corr(x̄,µx̄|y) = Slopey ·
√

Var(µx̄|y)/Var(x̄). (7)

The weight of the mean (Rivoirard, 1987) is another useful quality indicator in
kriging. Given datay, the weight of the mean is interpreted as the relative impactof
the regression, compared with that of the simple Kriging predictorCx,yC−1

y y. From
the prediction formula in (3) we recognize the simple Kriging predictor as the last
term, and the regression effect in the first part. When the deposit is more densely
sampled, the second term will dominate over the first term. Wehave

Weighty = (wtMx,ySyHt
yC

−1
y 1)/[(wtMx,ySyHt

yC
−1
y 1)+ (wtCx,yC

−1
y 1)]. (8)

The slope, correlation and weight of the mean are computed for each resource
block. In total, they can be represented as length 3740 vectors, with one value for
each resource block. They can be defined similarly conditioning on both current
datay and the new dataz. When we get more accurate predictions of the grade, the
slope is closer to 1, the correlation is closer to 1, while theweight of the mean is
closer to 0. The effect is expected to be clearer with perfectinformation (XRF) than
with imperfect data (XMET).

3.3 Reduction of entropy

We compare the information content using the entropy given current datay and
prospective dataz. Now letx∗ denote the oxide variable at the center of each of the
3740 resource blocks. The entropy (disorder) decreases with more information. It is
defined as the negative expected value of the log density. Fora Gaussianπ(x∗) =
N(µ ,Σ) we have entropy

Ent(x∗) =−

∫

π(x∗) logπ(x∗)dx =
n
2

log(1+2π)+
1
2

log|Σ |. (9)

The entropy reduction when acquiring the new dataz becomesδEnt=Ent(x∗|y)−
Ent(x∗|y,z) = 1

2(log|Cx∗|y|− log|Cx∗|yz|), whereCx∗|y is the covariance at all resource
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blocks giveny, whileCx∗|yz is conditional on bothy andz data. The determinant ex-
pressions can be evaluated before the actual data are collected.

3.4 Value of information

The VOI is the maximum monetary amount a decision maker should pay to collect
data. In our context there are two levels of decisions. The downstream decision
is whether to open the mine or not. This question is incorporated to solve for the
second level of decisions; whether one should collect XMET or XRF data in the
planned boreholes, or no further data.

The VOI is defined as the difference between prior and posterior value:

VOI = PoV−PV. (10)

We decide to purchase the dataz, either XRF or XMET in planned boreholes, only
if the VOI is larger than the price of data acquisition. The XRF data is perfect infor-
mation, and the VOI of XRF is always larger than the VOI of the imperfect XMET
data. However, the XRF data has a higher price than the imperfect XMET data.
For the Gaussian model, the prior and posterior value can be computed analytically
(Eidsvik and Ellefmo, 2012).

4 Results and discussion

We now evaluate the planned boreholes using the different information criteria .
Table 1 shows the values of different evaluation criteria. The XRF data are of

Table 1 Various evalaution criteria: Distance to nearest borehole, Kriging std, slope, correlation,
weight of mean and entropy, using current data, and with planned XRF and XMET borehole data.
The distance, standard error, slope and weight of the mean are vectors for all resource blocks. Here,
we display the averages over all blocks.

distance std slope corr weight of mean entropy
Current data 55.1 0.59 0.62 0.21 0.73 Ent=-2930
XMET data 48.0 0.57 0.69 0.27 0.63 δEnt=43.0
XRF data 48.0 0.57 0.70 0.29 0.62 δEnt=72.4

course more informative than XMET data, and for some criteria we clearly gain
some by acquiring XRF instead of XMET data. For instance, thereduction in en-
tropy is almost twice as large when collecting XRF. Of course, a pure distance cri-
terion does not separate between XRF and XMET in the new boreholes. For the
Kriging std the average difference between XRF and XMET collection is minis-



8 Steinar L. Ellefmo and Jo Eidsvik

cule. There is a slight improvement in the slope, correlation and weight of the mean
criteria, but the added value of XRF, compared with XMET, is small considering
the reduction from the current data.

Figure 2 illustrates the variability in the Kriging standard error, slope, correlation
and the weight of mean at the 3740 resource blocks. The histograms show current
values (left), with XMET data (middle) and with XRF data (right). Clearly, more
data pushes the histogram of the standard errors (top) towards smaller values, the
slope and correlation (middle) to higher values, and the weight of the mean (bottom)
to smaller values. Thus, at many resource blocks there is clearly added information
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Fig. 2 Histogram of evaluation criteria at all resource blocks. Kriging standard errors (top), slope
(middle, top), correlation (middle, bottom) and weight of the mean (bottom). The left displays
are based on current data, middle displays on current data and XMET in planned boreholes and
right displays on current data and XRF in planned boreholes.The vertical dashed lines are the
criteria-based separation of measured, indicated and inferred resources.

in the planned borehole data. The improvement going from XMET to XRF is visible
for resource blocks close to the planned boreholes, but not far away from these loca-
tions. In fact, the Kriging prediction errors have larger variability after conditioning
on more information. Of course, the planned data acquisition is guided to the spatial
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domains of most interest, and the reduction of uncertainty is highest where we want
to predict the grade accurately.

A resource classification is based on multiple criteria and experience of the local
geology, usually evaluated by a so-called competent person. Here, we simply com-
pare the presented geostatistical criteria and classify based on thresholding. It is not
an attempt to do a resource classification in compliance withthe JORC-code. The
categorization limits are obtained from the currently available data using geometric
considerations as follows: For each resource block we compute the azimuth angles
and distances to the five nearest borehole measurement locations. These are used to
group the resource blocks in four categories: Category 1: The fifth closest point is
within 30m and the standard deviation of the azimuth angles to data locations within
100 m is between 80 and 130 degrees. Category 2: The fifth closest point is between
30m and 60m and the standard deviation of the azimuth angles to data locations
within 100 m is between 80 and 130 degrees. Category 3: The fifth closest point
is within 60m and 200m and the standard deviation of the azimuth angles to data
locations within 100 m is between 80 and 130 degrees. Category 4 is defined by the
remaining resource blocks. The azimuth variability condition ensures that there are
proximal measurements in more directions, not only one borehole. Given this cat-
egorization of resource blocks, the 75 percentiles of all criteria are computed from
the Kriging errors, slopes, correlation and weight of the mean in resource blocks
belonging to each category. These values define the thresholding values for mea-
sured, indicated and inferred. They are displayed by vertical dashed lines in Figure
2. Recall that this is based on the current boreholes. The same thresholds are next
applied for the planned data as well.

The categorization we have done here is used to study the information content in
the new data and allows us to compare the methodologies. In particular, we aim to
study the effects of XMET and XRF data acquisition in the planned boreholes. The
geometric criteria based on distances and angles is easy to understand, but it is not
useful to compare the XRF and XMET data, since they are equally informative in
terms of distances and angles.

In Table 2 we show the resulting tonnages in the measured, indicated and inferred
categories. Here, the resource blocks falling in the measured, indicated and inferred
categories are converted to tonnes of resource. The block volumes outside the ore
are not included in the calculation. We use a cut-off value of2.5 % (based on current
data) to separate waste from ore. With the current data, using the Kriging standard
error as criterion, there are about 9 million tonnes of measured resource and 20 mil-
lion tonnes indicated. There are only slight variations between the criteria using our
thresholding method. Obviously, with more data, there are more resource blocks in
the measured category. When we collect XMET data in the planned boreholes, the
measured category in Table 2 has around 14-15 million tonnes. The indicated cat-
egory is around 21 million tonnes. Some blocks have gone fromindicated to mea-
sured, while others have gone from inferred to indicated. The sum of measured and
indicated resources is close to 40 million tonnes. Collecting XRF data in the planned
boreholes gives only slightly larger numbers in the measured category: 15-17 mil-
lion tonnes. Note that the pure geometric distance criterion has the same number as
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Table 2 Resource classification (in million tonnes) based on current data, XMET data in planned
boreholes and XRF data in planned boreholes. The measured, indicated and inferred classification
is done from thresholds in different evaluation criteria: Distances, kriging standard deviations,
slope, correlation and weight of mean.

Distance Kriging Std Slope Corr Weight
Current data

Measured 9.0 8.8 8.8 8.8 8.5
Indicated 20.8 21.3 21.9 21.2 21.4
Inferred 10.6 10.4 9.8 10.5 10.6

Current data and XMET in planned boreholes
Measured 13.8 14.2 15.1 14.2 15.2
Indicated 21.6 21.5 21.0 21.4 20.0
Inferred 5.1 4.8 4.5 5.0 5.4

Current data and XRF in planned boreholes
Measured 13.8 15.0 16.0 15.0 16.7
Indicated 21.6 21.0 20.4 20.8 18.7
Inferred 5.1 4.6 4.2 4.8 5.1

for XMET (13.8 million tonnes measured), since it uses no uncertainty modeling.
The indicated resource blocks are about 19-21 million tonnes. In summary, there is
a clear increase in measured tonnages going from current to XMET, but not such an
improvement when collecting XRF data instead of XMET.

Recall that these numbers are based on our subjective criteria. A real-life re-
source classification would have been based performed by a competent person in
compliance with the JORC-code or other similar codes.

In order to assess the value of XMET and XRF information, we specify revenues,
costs, processing parameters and tonnages. This allows us to compute the prior and
posterior value, and the VOI (Eidsvik and Ellefmo, 2012). Wedo this for XMET
and XRF in the planned boreholes. In Figure 3 we show the decision regions as
a function of XMET and XRF data acquisition prices. The decision regions are
computed by selecting the data type that gives the largest added value, compared
with the price of data. This entails a selection rule of:

Decision= argmax
{

VOIXRF−PriceXRF,VOIXMET −PriceXMET ,0
}

, (11)

where we decide to purchase XRF if VOIXRF−PriceXRF is the highest element in
the length three vector in (11). If none of the first two entries are positive, we decide
to purchase no more data. In our situation, the actual pricesof XRF and XMET
mean that we are just within the ’Nothing’ region. Given thatthe already defined
tonnages were enough to open the mine, we would decide not to purchase more
data. Recall that the price of XRF is always higher than the price of XMET, and the
relevant price ranges are above the straight line in Figure 3. XRF data is the most
lucrative data type for very low laboratory prices. For moreexpensive laboratory
analysis, XMET data is preferable.
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Fig. 3 Decision regions. Whether to purchase full XMET or XRF data,or nothing. The first axis
represents the price of XMET data. The second axis is the price of XRF data.

5 Closing remarks

We have presented a unified geostatistical model for XMET andXRF data used in
mining exploration. Several criteria for uncertainty reduction are discussed, and we
apply them for resource evaluation on a case study from Norway.
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