
The use of systems of stochastic PDEs
as priors in seismic AVA inversion

Erlend Aune and Daniel P. Simpson

Abstract A challenge in seismic amplitude versus angle (AVA) inversion to
elastic parameters is the inclusion of prior information from geology, geophys-
ical relations, well logs and other sources. In a recent publication, Lindgren
et al. (2011) developed the necessary background for using linear stochastic
partial differential equations (SPDEs) as prior fields in latent Gaussian models
and highlighted the link between such representations and Matérn covariance
functions. This approach allows for flexible incorporation of nonstationarity
and anisotropy in the prior model. Another advantage is that the prior field
is Markovian and therefore the precision matrix is very sparse, introducing
huge computational and memory benefits. The seismic AVA inversion problem
is essentially a trivariate random field inversion problem and the extension
of the univariate SPDE approach entails using a system of SPDEs as priors.
This allows us to control stationarity, anisotropy and smoothness of the indi-
vidual elastic parameters as well as for the link between them through the
cross-covariance SPDEs and therefore allows us to make more realistic prior
models. We explore the potential benefits this approach may have in seismic
AVA inversion.

1 Introduction

The seismic AVA inversion problem is well studied in the geophysical lit-
terature, and there are several incarnations of it with varying degrees of
complexity. In this article, we concern ourselves with the inversion problem
studied in (Buland and Omre, 2003; Buland et al., 2003; Rabben et al., 2008),
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using the wavefield propagation approximations in Aki and Richards (1980),
which results in linear systems of equations to solve. Variants and extensions
of these equations are found in Stovas and Ursin (2003), including nonlinear
approximations that may yield better inversion results in some situations.

2 Prior specification

The choice of prior in the inversion problem is of great importance when
it comes to the performance of the inversion. It is vital to choose a “good”
prior to emphasise the properties of m that we know it has. For us, m will
denote the elastic parameters of interest, and it depends on position. How we
do this is a matter of heuristics and geological knowledge. For a Gaussian
prior model, the standard way of specifying the prior model is through the
use of covariance functions for stationary fields (see, e.g. Buland and Omre
(2003)). A covariance function in the stationary case is defined by a correlation
function that defines how much a point is correlated with its neighbours and
a marginal variance parameter, %2 through

%2c(‖x− y‖) = Cov(x,y), (1)

and in the Gaussian case, this defines a strictly stationary process. There
is a list of widely used covariance functions in Cressie (1993). In the same
reference, the theory of covariance functions is elaborated upon. We will
throughout this text assume that the prior is from the Gaussian family. This
family is defined by having density

p(x|Q,µx) = (2π)n/2 det(Q)1/2 exp

(
1

2
(x− µx)TQ(x− µx)

)
, (2)

where Q = Σ−1 is the precision matrix – the inverse of the covariance matrix
Σ – and µx is the expectation, E(x|Q,µx).

Moreover, the fields m1,m2,m3 are assumed correlated with correlations
specified by well data and/or other local knowledge. In the discretized domain,
this allows for the following decomposition of the total covariance matrix

Σm = Σspace ⊗Σ0 (3)

where Σspace denotes the spatial covariance matrix, typically defined through
a covariance function, and Σ0 the correlations between the elastic parameters.
Since seismic observations typically are on a regular grid, either in 2-D or
3-D, it possible to let Σspace be circulant by extending the grid by as many
points as is needed to get the correlation below a threshold – typically 0.1 or
0.05. This allows us to use fast Fourier transforms for computing quantities of
interest related to the covariance matrix. This, together with the Kronecker
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structure of Σm allows for fast computations. See Buland et al. (2003); Rue
and Held (2005); Gray (2006) for details. This approach also has very low
memory requirements; since Σspace is circulant it may be stored using only
one vector. Hence storage is O(n) and computations (of any kind) are at most
O(n log n).

2.1 SPDE formulation

While this decomposition is sensible, it is also very inflexible and requires
stationarity for low storage requirements. Another way of pursuing good prior
models with fast computations and low memory requirements is through the
use of elliptic (pseudo) differential operators (Ruzhansky and Turunen (2009),
part 2 is an accessible source). The theory of pseudo differential operators is
closely related to Weyl transforms and short-time Fourier transforms or Gabor
transforms (Feichtinger et al. (2008)) and usual spectral considerations is
seismology apply. In this approach, it is the sparsity of the resulting precision
matrices that makes storage and computation manageable. Recently, Lindgren
et al. (2011), studied how to apply such operators in a statistical setting. They
studied a Laplace-like operator, (−4+ κ)α/2 and its relation to computation
and Matérn covariance models (Matérn, 1960; Whittle, 1963). The main
lessons are firstly, if

Mκ,αx(s) = (κ2 −4)α/2x(s) =W(s), (4)

where W is spatial Gaussian white noise, then x has Matérn type covariance
function, i.e.,

ρ(r) =
%2

Γ (α− d/2)2α−d/2−1
(κr)

α−d/2
Kα−d/2(κ r), (5)

%2 =
Γ (α− d/2)

Γ (α)(4π)d/2κ2(α−d/2)
, (6)

where Ks is the modified Bessel function of the first kind. Secondly, fast
computations through finite element methods or other discretisations of
the differential operator in (4) are available through the induced Markov
properties of the discretisation matrix, Qspace. That essentially means that
Qm = Qspace⊗Q0 is (very) sparse and with a structure ameanable to Cholesky
factorisation. An alternative requirement is that we can construct the matrix
vector product Qmv and det(Qm) relatively quickly through some iterative
or direct procedure.

When addressing the “stationarity” of the field defined by (4), it is only
stationary in the sense of (1) if it is defined on the whole of Rk, where k = 2, 3
in our case – alternatively when the corresponding operator is defined on a
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manifold without boundary. In our kase the domain on which (1) is defined is
merely a subset, namely a square or box in R2 or R3. Hence boundary effects
resulting from boundary conditions may destroy its direct interpretability in
terms of this equation. It is, of course, possible to specify boundary conditions
in such a way that you retain the property in (1), but usually there are more
natural physical boundary conditions that in our opinion improves upon the
specification through SPDEs compared to the model defined by covariance
matrices through stationary covariance functions also in the stationary case.

There are two properties that are desirable to have in the prior model in
AVA inversion. The first is being able to have different correlation length at
different points in space. If a geologist have sound reasons to believe that
a layer is very inhomogeneous, it may warrant putting a lower correlation
length here than in a layer that is thought to be very homogeneous with very
similar properties. Facilitating this is trivial - one merely lets κ2 = κ2(s) vary
with space. The other property that is very desirable to have is anisotropy.
Letting the correlation length vary with direction is very natural given that
the layers are typically not flat but are deformed in a specific way. The SPDE
resulting is the following variant of (4):

Mκ,α,sx(s) = (κ2(s)−∇ ·A(s)∇)α/2x(s) =W(s), (7)

where A is a 3× 3 symmetric positive definite matrix defining the anisotropy
angle and principal correlation length in the three directions defined by the
eigenvectors of the matrix. Realisations of the stationary model and the
nonstationary model is given in Figure 1. Here we have illustrated the “layer”
flexibility mentioned above, where the top layer is isotropic, and the bottom
layer is anisotropic with deformation defined by the layer.

Fig. 1 Realisations from stationary model given by (4) (left) and nonstationary model
given by (7) (right)
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To see how this relates to the usual approach, consider Q0 = Σ−10 and
say that m1,m2,m3 have equal Matérn covariance models (this includes the
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widely used exponential and Gaussian models), then the prior given as in (3)
is given by the following system of stochastic differential equations:

(Mκ,α,s ⊗Q0)m = W (8)

where W is vector Gaussian spatial white noise. The experience in AVA-
inversion is that at least one component of m worse resolved than the others,
with m1 being resolved the best (see Rabben et al. (2008) or any other
article treating this problem). The obvious next question then is whether
or not (8) specifies the best way of lending strength to the least resolved
parameters. If not, can we find better operators on the diagonal in (8), and/or
replace the off-diagonals with other operators that have better properties
in the inversion problem? The answer to this question is not obvious, but
we investigate some alternatives and see how they perform in our inversion
problem; the criterion for a better prior in the synthetic case being that
E((mtrue −mnew

est )2) < E((mtrue −mbase
est )2), where mbase

est is given by the
prior model (3).

It is possible to replace the operator Mκ,α in (8) by more general pseudo-
differential operators. Representations of such operators in terms of its symbol
are given by

(Kσf)(x) =

∫
Rd

σ(x, ξ)f̂(ξ)e2πix·ξdξ, (9)

where f̂ is the Fourier transform of f , and σ is the symbol of the operator.
The symbol can be interpreted as defining the local spectrum of the operator.
A deep theorem given in Rozanov (1977) states that a stationary random
field is Markov (in the continuous sense) if and only if σ−1 is a polynomial.
Hence Markov fields are represented by differential operators. Now, if the
field in question is not Markov, it is possible to approximate σ by a rational
approximation, σ(x, ξ)−1 ≈ σ−1rat(x, ξ) =

∑k
j=0 aj(x)(2πiξ)j . To find the ajs

one can, for instance, use optimisation techniques. This is one way to do
it, but we suspect that the time-frequency localisation of such an approach
may be suboptimal, and discretization of the non-Markov operator may be
better suited for time-frequency compressing approaches inducing approximate
Markovity. We do not pursue these type of ideas here, but mention them as
they are good candidates for future research.

3 Systems of SPDEs - generalising “ Q0”

It is easy to write the form the generalised approach must have. First, for
i, j = 1, . . . , 3, let
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Kij = qij(s)(κij(s)−∇ ·Aij(s)∇)αij/2 (10)

and define the following system of SPDEs

Km(s) =

K11 K12 K13

K12 K22 K23

K13 K23 K33

m(s) = W(s) (11)

For qij(s) = Q0
ij and Kij = Mκ,α we recover the structure in the previous

section with stationarity. In Hu et al. (2012), they study the properties of this
model in the stationary case, and give the link to the multivariate Matérn
fields in Gneiting et al. (2010). Any choice of Kij defines a valid Gaussian
Markov random field, both in the continuous sense and when discretized.
In order to reduce overparametrisation and increase interpretability, it is,
however, natural to restrict the models somewhat.

One possible way to reduce the parametrisation demand is to do the
modeling in the Cholesky domain. This is a simplification, but it is one we
believe should increase interpretability and possibly estimation properties. To
motivate this approach, consider the following: Suppose that the Cholesky
factorisation of Q0 is given by Q0 = L0L

T
0 , and that Qspace = Qs

1Q
s
2, for

some matrices Qs
1,Q

s
2. Generating the matrices {Qs

i}1,2 can for instance be
done by using αs = α/2 in (4) and discretizing this operator, but there exist
many other factorisations that may behave in better way for the problem at
hand. By a Kronecker product identity, Qspace ⊗Q0 = (Qs

1 ⊗L0)(Qs
2 ⊗LT0 ).

The intuition stemming from this identity carries over to the more general
case in a natural way: Let lij(s) be entry i, j of the Cholesky factor of the
matrix {qij(s)}ij locally, and define locally operators that will correspond
to some square root of its original form in (10). It is possible to define the
operators in such a way that we get back (11), but this is of minor concern in
practice as long as we get the interpretability we want. This is remniscient to
the triangular approach mentioned in Hu et al. (2012).

3.1 Parametrising qij(s)

In general, it is both hard to interpret a local precision matrix, Q0(s) =
{qij(s)}ij defining how the individual parts of the multivariate fields is related
to each other at position s, and to ensure that this matrix is positive definite. It
is much more natural to work with the inverse, namely the correlation matrix
defining the local correlation of the fields, Σ0(s) = Q−10 (s). Information about
correlation in different layers may come from geologists or geophysicists who
may know of phase changes when going from one layer to another in the
different layers, or other, more complex phenomena. It may also come from
well-logs that may contain information about such matters.
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If Σ0(s) = Σ0,1 for s ∈ S1 ⊂ Rd and Σ0,2 for s ∈ S2 ⊂ Rd, there is obvi-
ously a transition between these two states. If the transition is discontinuous,
this may be seen as a discontinuity in the realisation of the multivariate
random field - rarely a desirable property - but it may make sense in some
situations. There are obviously many ways of making a smooth transition
between Σ0,1 and Σ0,2, but one key consideration is that Σ0(s) must remain
positive definite for all s in some transition domain ST . One thing is certain -
it is not necessarily enough to let the off-diagonals element in Σ0,1 change
linearly in R3 to the corresponding off-diagonal elements in Σ0,2.

A very natural way of making such a transition between Σ0,1 and Σ0,2 is by
considering geodesics on the manifold of symmetric positive definite matrices,
denoted Pd. The natural metric on this space has a reasonable statistical
interpretation, closely related to information entropy and Kullback–Leibler
divergence, and an accessible account for the theory is given in Bhatia (2007).
Different treatments are given in (Ohara et al., 1996; Hiai and Petz, 2009).
For completeness, we give a small account of the definition and properties
we need related to this manifold. This exposition is based on Hiai and Petz
(2009); Bhatia (2007).

The Boltzmann entropy of the Gaussian distribution (2), defining an
information potential, is given by

B(p(x|Q,µx)) = B(Q) =
1

2
log det Σ + C, (12)

where C is an arbitrary constant, Σ = Q−1. The Riemannian metric based
on this information potential is the Hessian

gQ(H,M) =
∂2

∂s∂t
B(Q + sH + tM) = tr QHQK, (13)

where H,S ∈ Sd, the tangent space of symmetric matrices, Sd = {V ∈
Rd×d|V = VT }. This defines the line element

ds =
(

tr
[
(Q−1/2dQQ−1/2)2

])1/2
. (14)

Hence, if we have a curve in Pd, i.e. γ : [a, b]→ Pd, its length can be calculated
as

L(γ) =

∫ b

a

(
tr
[
(γ(t)1/2γ′(t)γ(t)1/2)2

])1/2
dt (15)

A nice property that follows from this is that lengths of curves are invariant
under congruence transformations. That is, if g(t) = XT γ(t)X, L(γ) = L(g).
The geodesic, the curve with minimal length, between two matrices, A and
A can from this be deduced to be
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gA,B(t) = A#tB = A1/2
(
A−1/2BA−1/2

)t
A1/2, t ∈ [0, 1]. (16)

Obviously, gA,B(0) = A and gA,B(1). It is this curve we use when we go from

A = Q0,1 = Σ−10,1 to B = Q0,2 = Σ0,2 in different geological layers in our
prior model, and this ensures that we are within the realm of positive definite
matrices in a natural way. Noting that (A#tB)−1 = A−1#tB

−1, we see that
it is unproblematic to work with precision matrices rather than covariance
matrices. Integrating gA,B(t) yields the distance between the two matrices,

dPd
(A,B) =

∫ 1

0

gA,B(t) =
(

tr
[
(log A−1/2BA−1/2)2

])1/2
. (17)

A potential drawback of using this method is that if Q0,1,Q0,2 are corre-
lation matrices, and what you want is a continuum of correlation matrices,
gQ0,1,Q0,2

(t) are not correlation matrices for t ∈ (0, 1). It is possible to correct

for this by using geodesics on the submanifold of correlation matrices in Pd.
In practice, however, gQ0,1,Q0,2

(t) are very close to being correlation matrices

in most cases. We do not have any counterexamples.
We conclude this section by giving realisations of the four major prior

models we have discussed. In Figure 2, no prior information about the geometry
of the subsurface can be included. In Figure 3, geometric information has
been incorporated, but no change in the correlation between the parameters
in space can be included. In Figure 4, an example realisation from the full
model is given. Pay attention to the rightmost field – here the correlation
to the other two fields changes from being positive in the top layer to being
negative in the bottom layer.

Fig. 2 Stationary model given by (3)
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Fig. 3 Nonstationary model with fixed Q0
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Fig. 4 Full nonstationary model with varying qij(s) according to (16)
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4 Conclusions and future work

In this text we have showed two things: First, how it is possible to incorporate
information about the geometry of the subsurface. Secondly, how to facilitate
changing covariance between elastic parameters depending on position. The
first hinges on using SPDEs in order to specify local properties of the fields,
and the second on how systems of SPDEs interrelate depending on position.
This approach is not limited to the relatively simple models described here
- rather, it may be used in any geological inversion problem with a natural
geometry where soft constraints based on expert opinion may be used.

For future work, the major item is parameter estimation. This entails
estimating the parameters m using both our approach and the stationary
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and seeing how this affects the estimates. In a future work, this text will be
expanded upon to include such estimates.

Appendix: Finite difference disretization - the gory
details

This appendix is devoted to the finite difference scheme we used for discretizing
the elliptic operator in (7). We employ a changed notation in this appendix for
convenience, and we hope that it is transparent for readers. For a 2-dimensional
field with α = 1, we have

∇ ·
(
a11(x, y) a12(x, y)
a21(x, y) a22(x, y)

)(
ux(x, y)
uy(x, y)

)
+ κ(x, y)u(x, y)

=∇ ·
(
a11(x, y)ux(x, y) + a1,2(x, y)uy(x, y)
a21(x, y)ux(x, y) + a22(x, y)uy(x, y)

)
+ κ(x, y)u(x, y)

=∂x(a11ux + a12uy) + ∂y(a21ux + a22uy) + κu

=ax11ux + a11uxx + ax12uy + a12uyx + ay21ux + a21uxy + ay22uy + a22uyy

=diag(A)∇ · ∇u+ (a12 + a21)uxy + ax11ux + ax12uy + ay22uy + ay21ux (18)

where avij , v = x, y denotes differentation wrt. x or y of the i, j element of A,
depending implicitly on the position. To discretize (18), we employ a finite
difference scheme. We define the following finite difference operators

δxu =
1

h
(uji+1 − u

j
i )

δx̂ =
1

h
(uji − u

j
i−1),

where i, j are positions on the grid, with i denoting the x-direction and j
denoting the y-direction. Now, we define the following operators

Λxxu = δx (α11δx̂u) = δx

(
1

h
α11

(
uji − u

j
i−1

))
=

1

h2

(
αi+1,j
11

(
uji+1 − u

j
i

)
− αi,j11

(
uji − u

j
i−1

))
, (19)

where

αi,j11 =
1

2

(
ai,j11 + ai−1,j11

)
αi,j22 =

1

2

(
ai,j22 + ai,j−122

)
.
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A equivalent expression holds for Λyyu. We define α1,1
kk = a1,111 , k = 1, 2. For

the mixed operators we have

Λ+
xyu =

1

2
(δx (a12δyu) + δx̂ (a12δŷu)) (20)

and we have

δx (a12δyu) =
1

h
δx

(
a12u

j+1
i − uji

)
=

1

h2

(
ai+1,j
12 (uj+1

i+1 − u
j
i+1)− ai,j12 (uj+1

i − uji )
)

δx̂ (a12δŷu) =
1

h
δx̂

(
a12(uji − u

j−1
i )

)
=

1

h2

(
ai,j12 (uji − u

j−1
i )− ai−1,j12 (uji−1 − u

j−1
i−1 )

)
.

Hence

Λ+
xyu =

1

2h2

((
ai+1,j
12 (uj+1

i+1 − u
j
i+1)− ai,j12 (uj+1

i − uji )
)

(21)

+
(
ai,j12 (uji − u

j−1
i )− ai−1,j12 (uji−1 − u

j−1
i−1 )

))
For Λ+

yx we reverse the order of the difference operators:

Λ+
yxu =

1

2
(δy(a12δxu) + δŷ(a12δx̂))

=
1

2h2

((
ai,j+1
12 (uj+1

i+1 − u
j+1
i )− ai,j12 (uji+1 − u

j
i )
)

+
(
ai,j12 (uji − u

j
i−1)− ai,j−112 (uj−1i − uj−1i−1

))
And the complete discretisation is

(Λxx + Λ+
xy + Λ+

yx + Λyy)u = f(u,W ) (22)

In Samarskii et al. (2002), it is proved that this scheme is convergent. If we
assume that A does not vary in space, we can simplify the scheme;
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Λ̂xxu =
1

h2
(a11(uji+1 − u

j
i )− a11(uji − u

j
i−1))

=
1

h2
a11(uji+1 − 2uji + uji−1)

Λ̂yyu =
1

h2
a22(uj+1

i − 2uji + uj−1i )

Λ̂+
xyu =

1

2h2

((
a12(uj+1

i+1 − u
j
i+1)− a12(uj+1

i − uji )
)

+
(
a12(uji − u

j−1
i )− a12(uji−1 − u

j−1
i−1 )

))
=
a12
2h2

(
2uji + uj+1

i+1 + uj−1i−1 − u
j
i+1 − u

j+1
i − uj−1i − uji−1

)
Λ̂+
yxu =

1

2h2

((
a12(uj+1

i+1 − u
j+1
i )− a12(uji+1 − u

j
i )
)

+
(
a12(uji − u

j
i−1)− a12(uj−1i − uj−1i−1

))
=
a12
2h2

(
2uji + uj+1

i+1 + uj−1i−1 − u
j
i+1 − u

j+1
i − uj−1i − uji−1

)
(
Λ̂+
xy + Λ̂+

yx

)
u =

a12
h2

(
2uji + uj+1

i+1 + uj−1i−1 − u
j
i+1 − u

j+1
i − uj−1i − uji−1

)
This corresponds to the following stencil

S = − 1

h2

 a12 −a22 − a12 0
−a11 − a12 2(a11 + a22 + a12) −a11 − a12

0 −a22 − a12 a12

 (23)
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