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Abstract Inversion of seismic AVO-data is an important part of reservoir evalua-
tion. These data are convolved but the convolution kernel and the associated error-
variances are largely unknown. We aim at estimating these model parameters with-
out using calibration observations in wells. This constitutes the first step in socalled
blind deconvolution. We solve the seismic inverse problem in a Bayesian setting
and perform the associated model parameter estimation by anapproximate marginal
maximum likelihood method. A small test study indicate thatbell-shaped wavelets
with smooth edges are identified well, even for approximations of low orders.

1 Introduction

In this study, we do parameter estimation by blind deconvolution for the seis-
mic inverse problem. This is of importance in exploration and development of
petroleum reservoirs. In seismic exploration, the seismicdata is registered as a spa-
tial convolution of the true physical properties in the subsurface Lithology-Fluid
(LF) layers. Inference on the LF-classes based on the convolved seismic obser-
vations thus pose a deconvolution problem, which we addressby a Bayesian ap-
proach, as presented in [Larsen et al. (2006)]. In particular, we focus on estimation
of the wavelet parameters causing convolution effects. Thefull study is presented in
[Lindberg and Omre (2012)].
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2 Model description

In a Bayesian framework, the solution to our inverse problemis represented by the
posterior model which is defined from a prior model and a likelihood model, see
[Larsen et al. (2006)]. The prior model is defined for the discrete LF fieldx. The
likelihood model defines the relationship of the seismic observationsd conditioned
on the LF fieldx. We assume that the observations are registrered as a convolution
of elementwise physical propertiesr. As there are two unobserved levels,x andr,
wherex has a Markov property andr is captured by convolution, we term the full
model a convolved two-level hidden Markov model. The variables dependencies are
displayed in Fig.1.

d1
. . . dt−1 dt dt+1 . . . dT

r1 . . . rt−1 rt rt+1 . . . rT

x1 . . . xt−1 xt xt+1 . . . xT

Fig. 1 Directed acyclic graph (DAG) of the convolved two-level HMM.

We assume that the underlying categorical variables followa stationary first-
order Markov prior model

p(x) = ΠT
t=1p(xt |xt−1)

wherext ∈ {1, . . . ,M}, andp(xt |xt−1) is defined from a transition matrixP. We let
p(x1|x0) = p(x1) for notational ease. We notice the first-order Markov dependencies
in x in Fig.1.

The likelihood model is split into a response likelihood model and an acquisition
likelihood model. The response likelihood model representconditional independent
rock physics properties which we assume to be Gaussian

p(r|x) = ΠT
t=1p(rt |xt) , p(rt |xt) = N(ηxt ,σ

2
xt
)

The acquisition likelihood model captures the convolutioneffect with Gaussian
white noise

p(d|r) = N(Wr,σ2
d I)

HereW is a convolution matrix, with rows denoted as wavelets,w. We assume the
wavelets to be stationary and parametrized by a discretizedsymmetric beta model,
b(α,β ), whereα is a shape parameter andβ a discrete width parameter. The Beta
model captures different wavelet shapes, see Fig.2. Hence each registration ind is a
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weighted sum of the elements inr, with weights given by the waveletw. We notice
the convolution effect of the response variablesr in the observationsd in Fig.1.
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Fig. 2 Continous symmetric Beta model,b(α ,β ).

The posterior model is defined from the prior model and the likelihood model

p(x|d) =C× p(x)×
∫

r
p(d|r)p(r|x)dr

HereC is a normalizing constant, which is infeasible to compute inpractice as one
need to sum over allMT combinations ofx. In order to compute the full posterior
model by the recursive Forward-Backward (FB) algorithm, the likelihood model
need to be on factorizable form, see [Baum et al. (1970)]. We choose akth order
likelihood approximation according to [Rimstad and Omre (2012)],

p̂(k)
(

d(k)
t |x(k)t

)

=

∫ p∗
(

r(k)t

∣

∣

∣d
)

p∗
(

r(k)t

) p
(

r(k)t

∣

∣

∣x(k)t

)

dr(k)t , (1)

Here,x(k)t = (xt−k+1, . . . ,xt) is akth order LF-state, and similarily forr(k)t andd(k)
t .

The functionsp∗(·) are Gaussian approximations with analytically tractable param-
eters. Akth order approximate posterior model on factorizable form is thus obtained
by

p̂(k) (x|d) = ΠT
t=kq(k)

(

x(k)t |d
)

where

q(k)(x(k)t |d) =























Ck ×Πk
i=1p(xi|xi−1) · p̂(i)

(

d(i)
i |x(i)i

)1/k
t = k

Ct × p(xt |xt−1) · p̂(k)
(

d(k)
t |x(k)t

)1/k
t = k+1, . . . ,T −1

CT × p(xT |xT−1) ·Πk
i=1 p̂(i)

(

d(i)
T |x(i)T

)1/k
t = T

(2)

Higher order approximations include more of the spatial dependencies caused by
convolution, and should thus perform better, see [Rimstad and Omre (2012)].
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3 Parameter estimation

We estimate the acquisition likelihood model parameters,θ d = (α,β ,σ2
d ) which

define the waveletw based on the observed data only. This constitutes a blind de-
convolution problem, and we use an approximate maximum likelihood estimation
method. With an approximate likelihood by Exp.(1), it can beshown that akth order
approximate marginal log-likelihood can be computed by

log
(

p̂(d;θ d)
)

=−ΣT
t=k log(Ct) (3)

see [Lindberg and Omre (2012)]. Here,Ct are the normalizing constants in Exp.(2)
which computation requiresO(Mk+1) operations. The approximate maximum like-
lihood is thus an optimization problem over aO(T Mk+1) function, as we need to
run the FB algorithm for each evaluation of Exp.(3).

4 Example

The synthetic test data in this example are presented in Fig.3. In this small example
we consider three possible LF-classes, represented by the colors white, grey and
black in Fig.3. The prior model parameters used are

P =





0.50 0.50 0
0.33 0.34 0.33

0 0.50 0.50





and response likelihood model parametersηxt ∈ {−2,0,3} andσxt = 0.7. In the
test, we use two wavelet forms with associated observations. The observationd1

is simulated using a discretized Gaussian,N(0,1), wavelet and the observationd2

using a Beta,b(1.000,6), wavelet. The two wavelets are displayed in red in Fig.4.

Fig. 3 Synthetic data in
example. The LF field,x, with
three possible LF classes,
the observationd1 simulated
using a Gaussian,N(0,1),
wavelet and the observation
d2 using a Beta,b(1.000,6),
wavelet.
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We have estimated the wavelet assuming a Beta shape and the acquisition noise
variance parameter. The parameter estimates are presentedin Table 1 and 2 for
the observationsd1 andd2 respectively. The corresponding estimated wavelets are
displayed in Fig.4 compared to the true wavelets. The noise variance parameter
is slightly overestimated ford1 and slightly underestimated ford2. Both wavelet
estimates ford1 resemble the true wavelet very well. Notice how different param-
eter sets(α,β ) may essentialy return the same Beta wavelet. Ford2, the wavelet
estimates differ significantly from the true wavelet. This might be due to the uni-
form wavelets sharp edges. We notice that the estimates do not improve significantly
when we increase the order of the approximation from two to three.

Table 1 Parameter estimation results ford1

Parameter Approximate MMLE True value
k = 2 k = 3

α 14.5185 52.9414 ∼12.75
β 5 10 ∼4
σd 0.3652 0.3435 0.3000

Table 2 Parameter estimation results ford2

Parameter Approximate MMLE True value
k = 2 k = 3

α 0.2965 0.2851 1.0000
β 7 7 6
σd 0.2313 0.2440 0.3000

5 Discussion and conclusion

In this study, blind parameter estimation is performed for aconvolved seismic in-
verse problem in a Bayesian setting. The work is inspired by seismic inversion of
AVO-data into lithology/fluid (LF) classes. Wavelet and convolution noise estima-
tion by a maximum likelihood method is performed in a small test study, computed
by an approximation of the convolved likelihood model. Results indicate that bell-
shaped wavelets are estimated well while uniform wavelets seem harder to recog-
nize. There seem to be small improvements in the parameter estimates for higher
order likelihood approximations. A lower order approximation thus provide a well
trade-off between CPU-time required and estimation accuracy. The methodology is
presented for a seismic trace in one dimension, but may easily be extended to higher
dimensions by estimating parameters along each vertical trace of a field.
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Fig. 4 Estimated and true wavelets for the two observed profiles. The original wavelet is displayed
in red while the estimated wavelets for approximation orderk = 2 andk = 3 are displayed in green
and dotted black respectively.
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