Wavel et estimation in seismic convolved hidden
M ar kov models

David Lindberg and Henning Omre

Abstract Inversion of seismic AVO-data is an important part of resarevalua-
tion. These data are convolved but the convolution kernéltha associated error-
variances are largely unknown. We aim at estimating thesgelpparameters with-
out using calibration observations in wells. This constisithe first step in socalled
blind deconvolution. We solve the seismic inverse problam iBayesian setting
and perform the associated model parameter estimation ag@oximate marginal
maximum likelihood method. A small test study indicate thell-shaped wavelets
with smooth edges are identified well, even for approximetiof low orders.

1 Introduction

In this study, we do parameter estimation by blind decorti@mufor the seis-
mic inverse problem. This is of importance in exploratiord atevelopment of
petroleum reservoirs. In seismic exploration, the seistata is registered as a spa-
tial convolution of the true physical properties in the sutiece Lithology-Fluid
(LF) layers. Inference on the LF-classes based on the coedddeismic obser-
vations thus pose a deconvolution problem, which we addrgss Bayesian ap-
proach, as presented in [Larsen et al. (2006)]. In particula focus on estimation
of the wavelet parameters causing convolution effects flilhetudy is presented in
[Lindberg and Omre (2012)].
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2 Model description

In a Bayesian framework, the solution to our inverse prolkempresented by the
posterior model which is defined from a prior model and a iil@d model, see
[Larsen et al. (2006)]. The prior model is defined for the dite LF fieldx. The
likelihood model defines the relationship of the seismiceptationsd conditioned
on the LF fieldx. We assume that the observations are registrered as a ationol
of elementwise physical propertiesAs there are two unobserved levetsandr,
wherex has a Markov property andis captured by convolution, we term the full
model a convolved two-level hidden Markov model. The vdgallependencies are
displayed in Fig.1.
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We assume that the underlying categorical variables fobostationary first-

Fig. 1 Directed acyclic graph (DAG) of the convolved two-level HMM
order Markov prior model

P(X) = M1 p(%|xi—1)

wherex € {1,...,M}, andp(x|x_1) is defined from a transition matrir. We let
p(x1|X%0) = p(x1) for notational ease. We notice the first-order Markov depeciks
in X in Fig.1.

The likelihood model is split into a response likelihood rabaind an acquisition
likelihood model. The response likelihood model representitional independent
rock physics properties which we assume to be Gaussian

prx) =Nap(relx) . p(rex) = N(nx,02)

The acquisition likelihood model captures the convolutaifect with Gaussian
white noise
p(d|r) = N(Wr,adl)

HereW is a convolution matrix, with rows denoted as waveletsyWe assume the
wavelets to be stationary and parametrized by a discretigennetric beta model,
b(a,B), wherea is a shape parameter afica discrete width parameter. The Beta
model captures different wavelet shapes, see Fig.2. Hexateregistration il is a
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weighted sum of the elementsrinwith weights given by the wavelet. We notice
the convolution effect of the response variablés the observationd in Fig.1.
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Fig. 2 Continous symmetric Beta modéka, 3).

The posterior model is defined from the prior model and thelillood model

p(x|d) = Cx p(x) x [ p(dlr)p(r|x)ar

HereC is a normalizing constant, which is infeasible to computpriactice as one
need to sum over aM™ combinations ok. In order to compute the full posterior
model by the recursive Forward-Backward (FB) algorithng likelihood model
need to be on factorizable form, see [Baum et al. (1970)]. Weose akth order
likelihood approximation according to [Rimstad and Omre1(2)],

8% (d ) :/ P (]d) p (9] ) arfe (1)

o (1)

Here,xt(k) = (X%—_k+1,---,%) IS akth order LF-state, and similarily fa{k) anddt(k).
The functionsp,(-) are Gaussian approximations with analytically tractalblem-
eters. Akth order approximate posterior model on factorizable farthus obtained

by
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Higher order approximations include more of the spatialeshglencies caused by
convolution, and should thus perform better, see [Rimstat@mre (2012)].
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3 Parameter estimation

We estimate the acquisition likelihood model paramet8gs= (a,B,a&) which
define the waveletv based on the observed data only. This constitutes a blind de-
convolution problem, and we use an approximate maximuntitikad estimation
method. With an approximate likelihood by Exp.(1), it carshewn that &th order
approximate marginal log-likelihood can be computed by

log (P(d; 84)) = -5 log(C) (3)

see [Lindberg and Omre (2012)]. Hefg,are the normalizing constants in Exp.(2)
which computation requirg®(M*+1) operations. The approximate maximum like-
lihood is thus an optimization problem oveiCTM**1) function, as we need to
run the FB algorithm for each evaluation of Exp.(3).

4 Example

The synthetic test data in this example are presented i.Higthis small example
we consider three possible LF-classes, represented byothesavhite, grey and
black in Fig.3. The prior model parameters used are

050050 O
P= | 0.33034 033
0 050050

and response likelihood model parametggse {—2,0,3} and oy, = 0.7. In the
test, we use two wavelet forms with associated observatibms observationl,
is simulated using a discretized Gaussis(, 1), wavelet and the observatiah
using a Betab(1.000,6), wavelet. The two wavelets are displayed in red in Fig.4.

Fig. 3 Synthetic data in
example. The LF field, with
three possible LF classes,
the observationl; simulated
using a Gaussiar\(0,1),
wavelet and the observation
d» using a Betab(1.000 6),
wavelet.
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We have estimated the wavelet assuming a Beta shape andjthisitiaon noise
variance parameter. The parameter estimates are presaniettle 1 and 2 for
the observationd; andd; respectively. The corresponding estimated wavelets are
displayed in Fig.4 compared to the true wavelets. The nags@amnce parameter
is slightly overestimated fod; and slightly underestimated fak,. Both wavelet
estimates fod; resemble the true wavelet very well. Notice how differentapa:
eter setqa,3) may essentialy return the same Beta wavelet.d0the wavelet
estimates differ significantly from the true wavelet. Thigyht be due to the uni-
form wavelets sharp edges. We notice that the estimatestdmpmve significantly
when we increase the order of the approximation from two iteeth

Table1 Parameter estimation results fiyr

Parameter Approximate MMLE True value
k=2 k=3

a 14.5185 52.9414 ~12.75

B 5 10 ~4

a4 0.3652 0.3435 0.3000

Table 2 Parameter estimation results fiy

Parameter Approximate MMLE True value
k=2 k=3

a 0.2965 0.2851 1.0000

B 7 7 6

a4 0.2313 0.2440 0.3000

5 Discussion and conclusion

In this study, blind parameter estimation is performed fapavolved seismic in-
verse problem in a Bayesian setting. The work is inspireddignsic inversion of

AVO-data into lithology/fluid (LF) classes. Wavelet and golution noise estima-
tion by a maximum likelihood method is performed in a smadt &udy, computed
by an approximation of the convolved likelihood model. Resindicate that bell-

shaped wavelets are estimated well while uniform wavelegsnsharder to recog-
nize. There seem to be small improvements in the paramdiaragdss for higher

order likelihood approximations. A lower order approxiiatthus provide a well

trade-off between CPU-time required and estimation aoyuiiche methodology is
presented for a seismic trace in one dimension, but mayydssixtended to higher
dimensions by estimating parameters along each vertae of a field.
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Fig. 4 Estimated and true wavelets for the two observed profiles.ofiginal wavelet is displayed
in red while the estimated wavelets for approximation okder2 andk = 3 are displayed in green
and dotted black respectively.
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