Spatial sampling design with skew distributions:
The special case of trans-Gaussian kriging

Gunter Spck

Abstract So far, methodologies for spatial sampling design assummtestigated
random field to be Gaussian. Most often the minimization efkhiging variance
averaged over the investigated spatial design region isidered as a design crite-
rion. The actual advantage of using this design criteridhas the kriging variance
is independent from the actual data values but dependenbartheir relative loca-
tions. The independence from data values is a result of thisstan assumption for
the considered random field. If the data follow a skew distign, like for example
data whose Box- Cox transformation is multivariate Gausstee assumption of in-
dependence of the design criterion from data values canngefde held. Kriging
with Box-Cox transformed data is also known as trans-Gaugsiiging. We con-
sider as design criterion the average of the expected Isind®6% predictive inter-
vals from trans-Gaussian kriging and show how samplinggesinay be calculated
efficiently using recent results of the author on the appnakion of random fields
by mixed linear models. To make the computations of such Baghgesigns faster
NVIDIA CUDA technology is used and the design algorithms ianplemented in
parallel on fast NVIDIA graphical processing units (GPUglpreover, both, de-
sign criteria taking covariance function estimation by REMto account and not,
are investigated. All theoretical findings are illustragca practical example taken
from a rainfall monitoring network.
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1 Introduction

We consider an isotropic random fiefdf (x) : x € X C [02}. The task of geostatis-
tics is to produce a prediction map of 8llxp),% € X, based on available data
y(x1),Y(%2),...,Y(Xn) and to report on the accuracy of these predictions. The best
known methodology for this task of interpolation is krigjrejso known as best
linear unbiased prediction. The so-called universal kggpredictor dependends
on the datay = (y(x1),y(X2),...,¥(X,))", the covariance matrik = Cov(y) and

the covariance vectarp = (Cov(Y (X),Y (X1)),...,Cov(Y(Xo),Y(X)))". The mean
squared error (MSEP) of this unbiased predictor is given by

0%(x0) = E(Y(%0) — Y (%0))? = C(0) — cfK "co+g(x0) " (FTKF) g(xo),

9(%0) = f(x0) —F'K co.

Obviously, the mean squared ermf(xo) is dependent on the arrangement of the
sampling locationsy, xo, . .., Xy Via the covariance matriK , the covariance vector
co and the design matrik.

As with any statistical prediction method, our aim is to makst use of the avail-
able data, possibly under certain budget constraints ostcints on the number
of locations that can be sampled. Thus, the goal is to obtagoad predictions as
possible for the complete area of investigatonOne possibility to formalize this
goal is to try to select the sampling locatioqsxs, . . ., X, in such a way that the sum
of all kriging MSEP’s

[ 00l )
X

becomes a minimum over the area of investigatorNotably, this is a very com-
plicated optimization problem and becomes still more cacapdd by the fact that
the covariance matriK enters the kriging MSEP in its inverse foidr .

The importance of (optimal) spatial sampling design cosisitions for environ-
mental applications and soil science has been demonsiratadte a few papers
and monographs: Brus and de Gruijter (1997); Brown et aR4);.9Cox Jr. (1999);
Groenigen et al. (1999); US-EPA (2002); Lark (2002); Caetral. (2003); Hengl et
al. (2003); Diggle and Lophaven (2006); Le and Zidek (20@8)s and Heuvelink
(2007); Dobbie et al. (2008); Delmelle and Goovaerts (2009)

2 The spatial mixed linear model

This section presents our approach to spatial samplinguleSio stochastic search
algorithms like simulated annealing to optimize the desigterion are needed in
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this approach because we make use of the mathematicabstacthe investigated
design criteria. We consider a mean square continuousc(irasd isotropic random
field {Y(x) : x € X C 02} such that

Y(x) =f(x)TB+¢&(x), Ee(x)=0, (2)

wheref(x) is a known vector of regression functiorse 0" a vector of unknown
regression parameters and denote

CoU(Y(%),Y(y)) =C(lIx—-yIl)i xyeX.

Then, according to Yaglom (1987), knowing the covariancefionC(.), the spec-
tral distribution function can be obtained from the inversformula

G(w") +G(w
(er /th

whereG(w™') andG(w™~) denote the right- and left-hand side limits atand J;
denotes the Bessel function of first kind and order 1. Thetsgladistribution func-
tion is positive, monotonically increasing and boundearfi@bove. Approximating
G(.) by means of a step function with positive jumegs= G(w 1) — G(w) at pre-
selected pointsg, i = 0,1,,...,n— 1, and changing to polar coordinatgs¢) =
(radius,angle), the polar spectral representation theorem for m.s.cropit ran-
dom fields tells us that the error process may be approxinzssted

t, )~ i){cos(mqb ZlJm wWt)Umi} + z {sin(m¢) ZJm wt)Vmit, ()

where all the random variabléh,; andVi; are uncorrelated, have mean zero, and
their variances are vy ) = var(Vmni) = dma,-z; anddy =1 form=0 anddy,, =2

for m> 1. By truncating the above series at a sufficiently large M, we get an
approximation of our random field in form of a mixed linear rebd

Y(x) = f(x)"B+9(x)"a+e(x). (4)

From (3) it becomes clear that the components of the additi@gression vector
g(-) are made up of cosine-sine-Bessel surface harmonics. €agdacapproximate
the spatial random field by means of a large regression moitlelrandom coef-

ficients was first proposed by Fedorov (1996), who approxéchétte random field
by the so-called Karhunen-Loeve-Eigen-expansion, whiéh general much more
complicated to calculate than our approach via the polastsgdeapproximation.
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3 Classical Bayesian experimental design problem

Starting from our spatial mixed linear model (4) we may gairtfer flexibility with
a Bayesian approach incorporating prior knowledge on gvedtrTo this we assume
that the regression parameter vegtas random with

E(B)=peO", Cov(B)=a.

This is exactly in the spirit of Omre (1987) who introducedyBsian kriging this
way. He used physical process knowledge to arrive at “qadlifjuesses” for the
first and second order momentsand@®. On the other hand, the state of prior igno-
rance or non-informativity can be modelled by settjng= 0 and letting® ! tend

to the matrix of zeroes, thus passing the “Bayesian bridgeihiversal kriging, see
Omre and Halvorsen (1989).

Now, combining (4) with Bayesian prior knowledge, we ar@¢heBayesian spa-
tial linear model (BSLM)

Y(X) =h(x)Ty+&(x), ()

where

Ey = <g> =y, Cov(y) = <gj :) =:T.

Here &(x) is white-noise with variance? and A denotes the covariance matrix
of a, resulting from the polar spectral approximation of thedam field. Sjck
and Pilz (2010) demonstrate that Bayesian linear trendnasibn in the above
BSLM actually approximates Bayesian linear kriging in tmigyimal model abitrar-
ily closely. The same is true for the total mean squared €TMISEP) of the trend
prediction and the TMSEP of Bayesian kriging.

Thus taking the TMSEP of the trend prediction in the apprating model as a
substitute for the Bayes kriging TMSEP we arrive at the feilg classical experi-
mental design problem for so-called I-optimality:

dn

/X ()T (HT (dn)H (ch) + 027 ~%)~th(x)dx — min. (6)

Heredn = {x1,X2,...,X,} collects either the design points to be added to the mon-
itoring network or in the case of reducing the network theglepoints remaining

in the monitoring networkH(d,) expresses the dependence of the design matrix
H= (h(xi)T)i:Lz,_”’n on the design points in the s@t.

At this point we advise the reader not familiar with Bayeséaperimental design
theory to read the Appendix of 8pk and Pilz (2010). The key point in this theory is
that the above so-called concrete design problem, whick doghave a convenient
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mathematical structure, may be extended to a so-calledhcmnts design problem
that has the nice feature to be a convex optimization problémas, the whole ap-
paratus of convex optimization theory is available to agpnately solve the above
design problem for I-optimality. In particular, directi@derivatives may be calcu-
lated and optimal continuous designs may be found by stedpssent algorithms.
Continuous designs are just probability measurem X and may be rounded to
exact designdy. Defining the so-called continuous Bayesian informatioirixa

2

Ma(&) = [ n(9h()TE (e + o 2 ™
JX n
and
u— /X h(x)h(x)Tdx, ®)

it may be shown that the set of all such information matrisenvex and compact
and that the extended design functional

W(Mg(§)) = tr(UMs(&) ) (9)

is convex and continuous Mg(&). The above design function®#(.) thus attains
its minimum at a desigg* € =, where = is the set of all probability measures
defined on the compact design reginsee Pilz (1991). The minimization &f(-)

is the continuous analogue to our original design problejn Tee closeness of
exact designs, to the optimal continuous desidit may be judged by means of a
well-known efficiency formula, see Appendix of &k and Pilz (2010).

4 The Smith and Zhu design criterion

In real world applications the isotropic covariance fuontCy(t) is always uncertain
and must be estimated. The kriging predictor used is theadbas this estimated
covariance functiolCy (t). Thus, the kriging predictor is always a plug-in predictor
and the reported (plug-in) kriging variance underestim#te true variance of this
plug-in predictor.

Smith and Zhu (2004) consider spatial sampling design bynsiedminimizing the
average of the expected lengths of &r predictive intervals:

/ E(length of predictive interval aty)dxo. (20)
X

Their predictors of thex/2 and 1- a /2 quantiles of the predictive distributions
are selected in such a way that the corresponding prediotieesals have coverage
probability bias 0. The predictors of the mentioned quanstilre essentially the plug-
in kriging predictors based on restricted maximum likeidgREML) estimation of
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the covariance function plus/minus a scaled plug-in kggitandard error term that
is corrected to take account of REML estimation. Based ordcapapproximation
it can be shown that this design criterion, up to the oi@ém—2), wheren is the
number of data, is equivalent to:

oA oA
[ 16300+ tr(egH 2200y 2200, 1)
306(x0) 17 1 006(%0) |
Z%—a/z{ 096 } kgt ;9 ]dxo_)dn={'\><|1|,.r.]..xn}
Here
(Ko)ij = (r(Wo 2wy 20, (12)

06 006
is the Fisher information matrix for REML,
Wo =Kyt~ Kt F(FTK'F) IFTK 2,

2)_q/2 is the 1 a/2-quantile of the standard normal distributiasg (xo) is the
universal kriging variance a§ andAg(Xo) is the universal kriging weights vector
for prediction atxy. This design criterion takes account of both predictiorusecy
and covariance uncertainty.

Sections 2 and 3 have demonstrated that by using the BSLM @)@roximation to
the true isotropic random field the design criterion of ltoyatlity can be completely
expressed in terms of the (concrete) Bayesian informatiatnixn

Mg=HTH+dgr

Going from this information matrix to its continuous vensi® g(&) according to

(7), the extended design functiort@Mg(&)) = tr(UMg(&)~1) becomes contin-
uous and convex on the compact and convex set of all suchmatton matrices

Mg(&). This was the reason why classical convex experimentagdesdgorithms

could be used to find optimal spatial sampling designs miziimgithe criterion (9).

In Spack et al. (2012) it is shown that the Smith and Zhu desigreiddh has also
some favourable properties, so that classical convex ewpatal design theory can
be applied to this design criterion, too:

e Expression (11) can be expressed completely in terms of éyedan informa-
tion matrixMg.

e The design functional is continuous on the convex and cotgeof allMg (&)
and has some advantageous properties according to whgdicdhexperimental
design algorithms may be used in order to find spatial samplasigns.

Assuming the BSLM (5) the covariance function is actuallygpaetrized through
the diagonal matriXA and the nugget variana%. Since the Smith and Zhu design
criterion assumes the covariance parameters to be estitmgtestricted maximum
likelihood we actually estimate this diagonal mam')andag by this methodology.
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The a priori covariance matri$ = cov(f3) must be given almost infinite diagonal
values because the Smith and Zhu (2004) approach assumgsrteparameter
vector 3 to be estimated by generalized least squaresd@néd c bridges the gap
from Bayesian linear to generalized least squares treirda&sin. The a priori mean
u = E(B) can be set t@ then.

According to the polar spectral representation (3) sevemhles in the diagonal
matrix A are identical:

A = diag{dma? }m-0.. Mi=1.. nk-12); (13)

where the definitions ofi, and a1-2 and the indexing derive from the polar spectral
representation (3). For restricted maximum likelihoodneation of A we have two
possibilities:

e We can leave the;’s unspecified: This approach is almost nonparametric secau
a lot of g;’s and corresponding frequenciesare needed to get the isotropic ran-
dom field properly approximated, and corresponds to a seanipetric estima-
tion of the spectral distribution function via a step fupati

e \We can specify a parametric model for m?és: The polar spectral density func-
tion for an isotropic random field ové&l? possesing for example an exponential
covariance functioB(h) = Cexp(—%) is given by

— (14)
T Qv
The polar spectral density function is defined just as the diesivative of the
polar spectral distribution functioB(w). A possible parametrization for tré’s
then is

ai_2:Mzg(wi*l)(\,\,ifwi,l),i:1,2,...,n, (15)

where 0=wp < w1 < ..., W, are fixed frequencies.

For the optimization of the Smith and Zhu design criterionmake use of the same
exchange design algorithms as described in Section 6.1 .nlyehave to replace
W(Mg(&)) by the Smith an Zhu design functional given ind8g et al. (2012).

5 Spatial sampling design for trans-Gaussian kriging

In trans-Gaussian kriging the originally positive valueda¥ (x;),i = 1,2,...,nare
transformed to Gaussianity by means of the Box-Cox transdition

)21 a0
gA(Z)_{Iog}(\z) :A=0"
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LetZ = (Z(x1),Z(X2),-..,Z(X,))" be the vector of original data and

Y = (02 (Z(x2)), 92 (Z(X2)),- -, Gr (Z(x)))T (16)

be the vector of transformed data. The predictive densityréms-Gaussian kriging
at a locatiorxy then may be written:

(95 (2); Yok (%), 06k (%)) + 2 2, (17)

where¢(.;\?OK(xo),05K(xo)) is the Gaussian density with mean equal to the ordi-
nary kriging predictolYok (Xo) atxo and based on the transformed variabfesnd
variance equal to the ordinary kriging variare$, (xo), z' ~* is the Jacobian of the
Box-Cox transformation.

For spatial sampling design we can consider again the awergoected length of
(1 — o)-predictive intervals. In order to make the expected lbagif predictive
intervals also dependent on REML-estimation of the covaeafunction, we can
consider instead of the Gaussian den#(y?OK(xo),agK(xo)) that unique Gaus-
sian densityp whose 0025- and 075-quantiles are given by the Smith and Zhu
(2004) 95% predictive interval

Yok (Xo) +
1.96 og(xo){1+ m[tr(xgl{ d)(‘;’e(ﬁ@ 1K ‘?299(;‘0) )+
1o@ {29600)y7, ~10000%0);, (18)

26 T

Last but not least, to get expected predictive intervals wetmreplace in the statistic
t(Y) = Yok (Xo) every variabler (x;) for which we do not have data by its ordinary
kriging predictor based on the available data. Furthermweanote that in the above
approach we have not taken into account the fact that theftranation parameter
A itself is estimated too, i.e. by maximum likelihood, andrthie plugged-into the
ordinary kriging predictor. In a future paper we will takecaant of this additional
uncertainty.

6 The spatDesign toolbox

The spatial sampling design and geostatistics toolboxDgsagn has been devel-
oped since 2003. It can be run in both MATLAB and Octave ancbeatiownloaded
from:

e http://wwwu.uni-klu.ac.at/guspoeck/spatDesignMattgh
e http://wwwu.uni-klu.ac.at/guspoeck/spatDesignOctzipe

The toolbox underlies the GNU Public Licence Version 3 orhleigand thus is
freely available. In MATLAB (www.mathworks.com) the toalb is fully func-
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tional but assumes that also the MATLAB Optimization andtiStias toolboxes
are installed. In Octave the Smith and Zhu criterion is ngtlemented. The spa-
tial sampling design functions corresponding to the Smitth 2hu design criterion
need (on a standard PC) a lot of computing time. For this reéisis part of the
toolbox has been parallelized to work with NVIDIA GPU’s arftetfreely avail-
able MATLAB parallelization package GPUmat (www.gp-yag)p If you have a
CUDA (www.nvidia.com) compatible graphics card instaltbén this will be au-
tomatically detected and the parallelized algorithms ffer 8mith and Zhu design
criterion will be used.

6.1 Spatial sampling design software

spatDesign V.2.2.0 implements three design criteria foyeBamn linear kriging,

where the first two are criteria for prediction only, with thevariance function

assumed to be certain. The third criterion is the Smith and(2B04) criterion tak-

ing account of also the fact that the covariance functiosisreated. The Smith and
Zhu design criterion has also been implemented for trangfdrGaussian kriging.

The implemented criteria for prediction only are:

e |-optimality:
Y(Mg(dy)) = tr(UMp(dn) 1) — rr(}in (29)

U=

h(x.j)h(x.j)" (20)
1

TM 3

where the integral in (8) has been replaced by the sum ovee gffid of locations
Xi.j € X.
e D-optimality:

W(Mg(dh)) = [(HT (dn)H (dh) + 057 %)Y — min (21)

The Smith and Zhu design criterion can be expressed (acgptdiSections 4, 5)
also in the form
Y(Mg(dn)) — ngin, (22)

The interested reader is referred ta8p et al. (2012).

The basic algorithm for calculating spatial sampling desig an exchange algo-
rithm from experimental design theory going back to Feddf®72). Contrary to
the construction of optimal discrete designs, here we dgmmuwe convergence of
the exact designs to the functional valééd*) of an optimal exact desigd*; we
can only guarantee stepwise improvement of a given exatingtalesign, i.e. the
sequence of functional valu&4(d, s) decreases monotonically with increasing it-
eration indexs. The algorithm is an exchange algorithm improvimgoint designs
and starting from an initial design.
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6.1.1 Exchangealgorithm

Step 1. Use some initial desigh 1 = {X1.1,...,%1} € X" of sizen.
Step 2. Beginning witls = 1 form the desigmly, 1 s = dns+ (Xn+1s) by adding the
point

Xnt1s = arg Qg)i(nW(M B(dhs+ (X))

to dns.
Then formdis = dhi1s— (Xjs), ] = 1,2,...,n+ 1 and delete that poing; s from
On1,5 for which

W(Mg(dls) = min W(Mg(diy))).
’ je{1,...,n+1} ?

Repeat Step 2 until the point to be deleted is equivalenta@tint to be added.

6.1.2 Generation of an initial design

The initial design is a one-point design which minimizes thesign functional
among all designs of size= 1. Note that such a design exists since the Bayesian
information matrix is positive definite even for designs iaés = 1.

Step 1. Choosg; € X such that

x1 = arg minex Y(Ms((x))), and seth = (xq).

Step 2. Beginning with= 1, findx;.1 such that

Xi+1 = arg minex Y (Mg(di + (x))) and formd; ;1 = dj + (Xi+1).
Continue withi replaced by + 1 untili+1=n.

Step 3. Ifi + 1 = n then stop and take

dn1 = {X1,...,X} @s aninitial design.

6.1.3 Combination of the above two algorithms

Itis a good idea to combine the initial design algorithm ameléxchange algorithm
in the following way:

Step 1. Start with the initial design algorithm and find a desiith one first de-
sign point.

Step 2. Having found a design with > 1 design points apply the exchange algo-
rithm to this design to improve it.

Step 3. Add to the design from Step 2 one further design pginnbans of the
initial design algorithm to gan+ 1 design points.

Step 4. Go back to Step 2 and iterate Step 2 and Step 3 until geel foundn
desired design points.
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6.1.4 Reduction of experimental designs

Often it is desired to reduce a given experimental dedigh{xi,Xz,...,X,} to one
including onlym < n design points fronal:

Step 1. Delete that design poixt fromd for which

Xj+ = argmiry;eq ¥(Mg(d — (xj))), and set

d:=d—(xj).

Step 2. Iterate Step 1 until the desigicontains onlym design points.

Also this algorithm may be combined with an improvement siepilar to the ex-
change algorithm.

6.1.5 Inverse of the information matrix

The calculation of exact designs requires in every step #heutation of the in-
verses of the information matricég(dn s) or Mg(dn+1s). In the next Sections we
will see that these information matrices can have a quith Hignension of about
3000x 3000. So, how can one invert such large matrices in affoediible? There
is computationally no need to make explicit use of numericalrix inversion algo-
rithms, when one considers the update formulas (13.26) E31@8) in Pilz (1991):

4 n+1 _1 Mg(dns) th(x)h(x)"Mg(dns)t
Ma(hs+ (09) = == {Ma(ths) = == T8 i e the.

i \—1_ N _ Mg (dn 1.s)71h(x'7s)h(x',s>TMB(dn 1,5)71
MB(er]’s) 1_m{MB(dn+1,s) 14 n+§—h(Xj,s)JTMB(C;n+1,s)_1h(;<rj,s) }

Obviously, only matrix- and vector multiplications are ded in these update for-
mulae.

6.1.6 Basic sampling design functions

The basic spatial sampling design functions are:

OPTIMALLY _-DELETE.N_LOCATIONS_.FROM_POOLDELETE.m
OPTIMALLY _ADD _N_LOCATIONS_.FROM_.POOLCOMPLETE.m
OPTIMALLY _ADD_N_LOCATIONS_FROM_POOLADD.m
OPTIMALLY _IMPROVE_.POOLDELETEFROM_POOLCOMPLETE.m
OPTIMALLY _IMPROVE_POOLDELETEFROM_POOLADD.m

The names of these functions are self-explanatory: “Poetieleis the discrete pool
of locations that are allowed to be deleted from the desigmofcomplete” is
the complete compact area of points frofnallowed to be added to the design.
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“Pooladd” is the discrete pool of locations that are allowedbe added to the de-
sign. “Improve” means the exchange algorithm, where locatifrom “Pooldelete”
may either be exchanged by locations from “Poolcompletdtan “Pooladd” and
the total number of sampling locations remains constant.

7 An example session

The purpose of this section is to demonstrate some capabitf the spatDesign
toolbox. The most important Matlab function calls relatedsampling design with
the Smith and Zhu design criterion are given. The data setidered is a rainfall

0 20 40 60 80 100 120 140 160 180 200

Fig. 1 Left: The 36 sampling locations of the Upper Austria rainfaltedset set. Right: The 36
time series of average monthly rainfall at each station.

data set from Upper Austria. The monitoring network cong®i86 locations. Av-
erage monthly rainfall has been measured at each locatdinstin January 1994
and ending in December 2009. In Fig. 1 we see that there aieudy areas in the
design region that look very empty, having no sampling liocet

7.1 Preparatory calculations

Next let us calculate from the above time series for eaclostéite mean rainfall
over the years, as well as the residual rainfall, for eacthefi2 months, Fig. 2.
We proceed by calculating from the rain residuals for eacthefl2 months the
empirical semivariogram and the semivariogram standeddlzy the variance of
each month, Fig. 3. We next calculate for each station thenroéaain residuals,
the empirical semivariogram corresponding to these meaas ditted exponential
semivariogram, Fig. 3. The fact that the standardized samoigrams are almost the
same for all months means that the space-time random fiekberable and that
we can use one and the same semivariogram (the grey one irighedR Fig. 3)
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Fig. 2 Left: The average monthly rainfall over the years at each @f3® stations, for each of the
12 months. Right: The residual rainfall at each of the 36 stationgach of the 12 months.
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Fig. 3 Left: Standardized empirical semivariograms for all of the 12 the@and a fitted exponen-
tial semivariogram (grey). Right: Empirical semivariogram foe tmean of rain residuals and a
fitted exponential semivariogram (grey).

for doing spatial sampling design for each month. In the s we calculate the
polar spectral distribution function corresponding ts thémivariogram. Obviously,
this spectral distribution function almost attains its maxm of 17352 atw = 47.
We now select the frequencies,i = 1,2,...,34 , calculate an approximation to
the spectral distribution function via a step function (#teps are the?) and check
whether this approximation to the spectral distributiondtion provides a good fit
to the original covariance function , Fig. 4.

load wscaled

plotspectraldist(0:0.5:47,deltaOrain)

w=wscaled*47;

[wrain,deltaraifrexpstep(w,deltaOrain(3),deltaOrain(2)); % the diseret
spectrum

hold on, approxspectraldist(wrain,deltarain)
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plotcovarianceapprox(wrain,45,deltarain,delta0d#rh:0.05:17,73,12.5,12.5,
15,70.8,73); %the worst approximating covariance fumctio

polar spectral distribution function covariance function and its approximation

1800 1800
1600 1600
1400 1400
1200 1200
1000 1000
800 800
600 600
400 400
200 200
0 0

Fig. 4 Left: Polar spectral distribution function and its approximat(grey). Right: True covari-
ance function (black) and its worst approximation (grey).

A look at the approximating covariance function in Fig. 408 that at the origin
the difference between the true covariance function anéjpipeoximating covari-
ance function is 20. This is small scale variation that thereaximating covariance
function does not take into account. Later in spatial samgptlesign we will add
this value of 20 to the nugget effect 186of the true covariance function. Thus,
20+ 10638 is the variance of the uncorrelated error pro@$és) in our BSLM (5).
We now have all the quantities that we need in order to doatimpling design on
the basis of our Bayesian spatial linear model (5), cornedjpg to the assumption
of Gaussianity of observations.

7.2 Optimal design for the BSLM

We consider to add 14 additional sampling locations fromcibvaplete design re-
gion X to the available grid of 36 sampling locations, Fig. 5.

[xadd,yadd,avglengthpredjabptimally_add.n_locationsfrom_poolcomplete(

{ e % ndernal drift

[Joeeereeemereeie e % meed to specify the matrid
xyelevation(:,1),xyelevation(:,2),ones(36,1),..% #vailable data locations
20+delta0rain(l),......ccceeeeeeraannnns % the variaof the uncorrelated error

.............................................. Y%.processo(X)
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[10000000, 0; 0,0.00000010; 0,0,0.0000001,..% the a priori variance of
.............................................. %.the constant trend must be given
.............................................. %.almost infinite variance; no linear drift

AT = 11 PP % tinequencies of the Bessel harmonics
A5, Betlargest angular frequency
deltarain,........cocoveeeeenienenes % tife

deltalrain,.......ccccceeeeevvvvineeeeennn. % thegmaeters of the
.............................................. %.exponential covariance function
L) the Box-Cox transformation parameter
.............................................. %.(no transformation, Gaussian kriging)

LA, i % want to add 14 samples
12.5,15,70.8,73,.cccveeeeeeeecciinnnn, % the sizthefdesign region
L0, %aximally iterate 10 times in the exchange
.............................................. %.step

boundary,.........cccoccvieeiiiiin % theyganal design region

17,07 e %aietization in Easting and Northing
.............................................. %.when considering new samples

"2 eooos0mmanamamassssassnsoosammatemasaasssnat We apply the Smith and Zhu (2004) design
.............................................. %.criterion to ordinary kriging
0t b graphical output

)i

Fig. 5. shows the optimal 8- and 14 point designs. Obviowsytain locations
have been selected with multiplicities larger than 1. Thesoa is that the Smith
and Zhu design criterion does not only take account of bexstigiion but also of
covariance estimation; in order to get the nugget effect tamdoehaviour of the
covariance function close to its origin well estimated lomas are needed in the
optimal design which are close to each other. Fig. 6 plotsidueease of the average
of the expected lenghts of the 95% predictive intervals wadting up to 14 design
locations.

The calculation of the optimal 14 point design takes aboetweek, on an Intel
i7 8 Core CPU and a NVIDIA 580 GPU with 1.6 Gb RAM. Similar cdettions for
the simpler design functional (19) take, without NVIDIA CBBupport, one day.

7.3 Design for the trans-Gaussian kriging

In the above example session we have assumed the data to s&i&eand have in-
tended to use ordinary kriging for prediction, althoughisagsible from Fig. 2, the
data are not Gaussian. Thus, we will consider now the assomibtat the rainfall
residuals can be transformed to Gaussianity by means of &®etransformation.
Because the Box-Cox transformation works only for positigkied data we have
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Fig. 5 Left: Optimal 8 point design for Gaussian kriging. Right: Optinddl point design for
Gaussian kriging. Certain locations have been selected wittiptcities larger than 1.

average of the expected lengths of 95-percent predictive intervals

Fig. 6 Average of the ex-
pected lengths of 95% predic-
tive intervals, when adding up 72, . : : o 5 %
to 14 design locations.

to add a positive offset to the 12 monthly sets of rainfalldeals. To identify the
appropriate offset and optimal Box-Cox transformatiorepagterio we perform a
sequence of Lilliefors tests for Gaussianity on the tramséa rainfall residuals. We
then retain this offset and the corresponding Box-Cox fansation parametekg,
where the sum of the 12 p-values from the Lilliefors testgiatits maximum. Fig.
7 gives the corresponding surfaces of the sum of p-valuesyanmtber of rejected
hypotheses for Gaussianity at the 10% significance levelofting to these figures
the optimal parameters are chosen as:

offset=53
Ao = —0.25

Obviously, for these parameters only one hypothesis of Sanigy is rejected at
the 10% significance level.
We now proceed as in the Gaussian case. Fig. 8 shows starethesfhpirical semi-
variograms of the Box-Cox transformed rain residuals amdstamivariogram of
the Box-Cox transformed means of rain residuals. Interghtj the fitted semivari-
ograms in this figure are just scaled versions of the fittedwagingrams from Fig.
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50 60 70 80 90

Fig. 7 Left: Sum of the p-values, depending on the transformationrpeier A and the offset.
Right: Number of rejected hypotheses of Gaussianity at 10% signite level, depending on the
transformation parametdrand the offset.

3. The parameters of the semivariogram on the Right of Figre8daltaOBox=[
0.0047, 0.0768, 4.5000, 0, 0]. By means of

load wscaled

figure

plotspectraldist(0:0.5:50,delta0OBox)

wBox=wscaled*50;
[wBox,deltaBo¥=expstep(wBox,delta0Box(3),deltaOBox(2));

hold on, approxspectraldist(wBox,deltaBox)

figure
plotcovarianceapprox(wBox,45,deltaBox,delta0B0X51205:17,73,12.5,
12.5,15,70.8,73)

we go on to calculate the spectral distribution function asdtep-wise approx-
imation and the worst approximating covariance functioe.te that close to the
origin h = 0 the difference between the true covariance function anajjproxima-
tion is 0.001. Finally, the function call

[xxresrainBox,yyresrainBox,avglengthpredintBox

optimally_add n_locationsfrom_poolcomplete{},[],xyelevation(:,1),
xyelevation(:,2),meanresrainmeanmonth,deltaOBoX(D@1,
[10000000000000,0,0;0,0.00000000000001,0;0,0,0. @WIWDOO0,
wBox,45,deltaBox,deltaOBox,lambda0,14,12.5,15, 738,
10,boundary,17,17,'z’,0);

calculates the optimal 14 point design. Fig. 9 visualizetinwgd 8- and 14-point
designs for trans-Gaussian kriging. Fig. 10 gives the ebgoklengths of 95% pre-
dictive intervals.
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Fig. 8 Left: Standardized empirical semivariograms of the transforragdresiduals for all of the
12 months and a fitted exponential semivariogram (grey). Rimipirical semivariogram for the
transformed mean of rain residuals and a fitted exponential seagvam (grey).

Fig. 9 Left: Optimal 8 point design for trans-Gaussian kriging. Righpti@al 14 point design for
trans-Gaussian kriging. Certain locations have been seledtiednultiplicities larger than 1.

average of the expected lengths of 95-percent predictive intervals expected lengths of 95-percent predictive intervals

180
160
140
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100
F 80
60
40
2 4 6 8 10 12 14 16

Fig. 10 Left: Decrease of the average expected lengths of 95% prediotervals, when adding
up to 14 design locations. Right: Expected lengths of 95% ptiediintervals corresponding to
the optimal 14 point design.
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8 Conclusion

Obviously, the designs for trans-Gaussian kriging in Figré&completely different
from the designs for Gaussian kriging in Fig. 5. Whereas ttsigds in Fig. 5 are
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much more space-filling the design locations in Fig. 9 hawenlselected in areas
that have high average value of rainfall. This fact becomeerolear when we com-
pare Fig. 9 to Fig. 11, where the median rainfall from the fotage distributions of
trans-Gaussian kriging is visualized. Obviously, in aneéh high average rainfall
the average expected length of 95% predictive intervaldbeanost decreased. This
fact results from a fundamental difference between dedign&aussian random
fields and designs for trans-Gaussian kriging: DesignsréorstGaussian kriging
are dependent also on the data, through the ordinary krigiedictor in formula
(18).

median length of 95-percent predictive interval

220

200

180

160

140

120

100

80

. o
- "
20

10 20 30 40 50 60

Fig. 11 Left: The median rainfall field+53 calculated from the preuie distributions of trans-
Gaussian kriging applied to the 36 means of rainfall residuaightRExpected lengths of 95%
predictive intervals corresponding to the trans-Gaussiatnigigom the left figure.

References

Brown, P.J., Le, N.D. and Zidek, J.V. (1994). Multivariafgatial interpolation and
exposure to air pollutant3he Canadian Journal of Statistics, 2, pp. 489-509.
Brus, D.J. and de Gruijter, J.J. (1997). Random samplingeosttistical model-
ing? Chosing between design-based and model-based sgrajhitegies for soil

(with discussion)Geoderma, 80, pp. 1-44.

Brus, D.J. and Heuvelink, G.B.M. (2007). Optimization ofrgde patterns for uni-
versal kriging of environmental variabléSeoderma, 138, pp. 86-95.

Caeiro, S., Painho, M., Goovaerts, P., Costa, H. and Sou$20&3). Spatial sam-
pling design for sediment quality assessment in estudeasronmental Mod-
elling and Software, 18, pp. 853-859.

Cox Jr., L.A. (1999). Adaptive spatial sampling of contaated soilsRisk Analysis,
19, pp. 1059-1069.

Delmelle E.M. and Goovaerts, P. (2009). Second-phase sagmesigns for non-
stationary spatial variable§eoderma, doi:10.1016/j.geoderma.2009.08.007.



20 Gunter Spick

Diggle, P. and Lophaven, S. (2006). Bayesian Geostatiddiesign, Scandinavian
Journal of Satistics, 33, pp. 53-64.

Dobbie, M.J., Henderson, B.L. and Stevens Jr., D.L. (2088arse sampling: Spa-
tial design for monitoring stream networl&atistics Surveys, 2, pp. 113-153.
Fedorov, V.V. (1996). Design of spatial experiments: mdittithg and prediction. In
Gosh, S. and Rao, C.R., editorandbook of Satistics, 13. Elsevier, Amsterdam,

pp. 515-553.

Fedorov, V.V. (1972)Theory of optimal experiments, transl. and ed. by W.J. Stud-
den and E.M. Klimko, Academic Press, New York, (Russian i@ag Nauka,
Moscow 1971), 292 p..

Groenigen, J.W. van, Siderius, W. and Stein, A. (1999). @aimed optimisation of
soil sampling for minimisation of the kriging variand@goderma, 87, pp. 239-
259.

Hengl, T., Rossiter, D.G. and Stein, A. (2003). Soil samplatrategies for spa-
tial prediction by correlation with auxiliary mapA8ustralian Journal of Soil Re-
search, 41, pp. 1403-1422.

Lark. R.M. (2002). Optimized spatial sampling of soil fotigstion of the vari-
ogram by maximum likelihoodzeoderma, 105, pp. 49-80.

Le, N.D. and Zidek, J.V. (2006 Ratistical Analysis of Environmental Space-Time
Processes, Springer, New York, 356 p..

Omre, H. (1987). Bayesian kriging - merging observationd qunalified guess in
kriging, Mathematical Geology, 19, pp. 25-39.

Omre, H. and Halvorsen, K. (1989). The Bayesian bridge betvggmple and uni-
versal kriging Mathematical Geology, 21, pp. 767-786.

Pilz, J. (1991)Bayesian Estimation and Experimental Design in Linear Regression
Models, Wiley, New York, 306 p..

Smith, R.L. and Zhu, Z. (2004). Asymptotic theory for Kkrigin
with estimated parameters and its application to networksigie
www.stat.unc.edu/postscript/rs/supp5.pdf, 21 p..

Spock, G. and Pilz, J. (2010). Spatial sampling design andrévee-robust mini-
max prediction based on convex design id&sghastic Environmental Research
and Risk Assessment, 24, pp. 463-482.

Spock, G., Zhu, Z. and Pilz, J. (2012). Simplifying objectivmttions and avoiding
stochastic search algorithms in spatial sampling desigreed byStochastic
Environmental Research and Risk Assessment, 20 p.

US-EPA (2002) Guidance on choosing a sampling design for environmental data
collection, EPA QA/G-5S, United States Environmental Protection Ageii0
p..

Yaglom, A.M. (1987) Correlation Theory of Stationary and Related Random Func-

tions |, Springer-Verlag, New York, 526 p..



