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Abstract So far, methodologies for spatial sampling design assume the investigated
random field to be Gaussian. Most often the minimization of the kriging variance
averaged over the investigated spatial design region is considered as a design crite-
rion. The actual advantage of using this design criterion isthat the kriging variance
is independent from the actual data values but dependent only on their relative loca-
tions. The independence from data values is a result of the Gaussian assumption for
the considered random field. If the data follow a skew distribution, like for example
data whose Box- Cox transformation is multivariate Gaussian, the assumption of in-
dependence of the design criterion from data values can no longer be held. Kriging
with Box-Cox transformed data is also known as trans-Gaussian kriging. We con-
sider as design criterion the average of the expected lengths of 95% predictive inter-
vals from trans-Gaussian kriging and show how sampling designs may be calculated
efficiently using recent results of the author on the approximation of random fields
by mixed linear models. To make the computations of such sampling designs faster
NVIDIA CUDA technology is used and the design algorithms areimplemented in
parallel on fast NVIDIA graphical processing units (GPUs).Moreover, both, de-
sign criteria taking covariance function estimation by REML into account and not,
are investigated. All theoretical findings are illustratedby a practical example taken
from a rainfall monitoring network.
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1 Introduction

We consider an isotropic random field{Y (x) : x ∈ X ⊂ ℜ2}. The task of geostatis-
tics is to produce a prediction map of ally(x0),x0 ∈ X, based on available data
y(x1),y(x2), . . . ,y(xn) and to report on the accuracy of these predictions. The best
known methodology for this task of interpolation is kriging, also known as best
linear unbiased prediction. The so-called universal kriging predictor dependends
on the datay = (y(x1),y(x2), . . . ,y(xn))

T , the covariance matrixK = Cov(y) and
the covariance vectorc0 = (Cov(Y (x0),Y (x1)), . . . ,Cov(Y (x0),Y (xn)))

T . The mean
squared error (MSEP) of this unbiased predictor is given by

σ2(x0) = E(Y (x0)− Ŷ (x0))
2 = C(0)− cT

0 K−1c0 +g(x0)
T (FT K−1F)−1g(x0),

where

g(x0) = f(x0)−FT K−1c0.

Obviously, the mean squared errorσ2(x0) is dependent on the arrangement of the
sampling locationsx1,x2, . . . ,xn via the covariance matrixK, the covariance vector
c0 and the design matrixF.
As with any statistical prediction method, our aim is to makebest use of the avail-
able data, possibly under certain budget constraints or constraints on the number
of locations that can be sampled. Thus, the goal is to obtain as good predictions as
possible for the complete area of investigationX. One possibility to formalize this
goal is to try to select the sampling locationsx1,x2, . . . ,xn in such a way that the sum
of all kriging MSEP’s

∫

X
σ2(x0)dx0 (1)

becomes a minimum over the area of investigationX. Notably, this is a very com-
plicated optimization problem and becomes still more complicated by the fact that
the covariance matrixK enters the kriging MSEP in its inverse formK−1.
The importance of (optimal) spatial sampling design considerations for environ-
mental applications and soil science has been demonstratedin quite a few papers
and monographs: Brus and de Gruijter (1997); Brown et al. (1994); Cox Jr. (1999);
Groenigen et al. (1999); US-EPA (2002); Lark (2002); Caeiroet al. (2003); Hengl et
al. (2003); Diggle and Lophaven (2006); Le and Zidek (2006);Brus and Heuvelink
(2007); Dobbie et al. (2008); Delmelle and Goovaerts (2009).

2 The spatial mixed linear model

This section presents our approach to spatial sampling design. No stochastic search
algorithms like simulated annealing to optimize the designcriterion are needed in
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this approach because we make use of the mathematical structure of the investigated
design criteria. We consider a mean square continuous (m.s.c.) and isotropic random
field {Y (x) : x ∈ X ⊆ ℜ2} such that

Y (x) = f(x)T β + ε(x), Eε(x) = 0, (2)

wheref(x) is a known vector of regression functions,β ∈ ℜr a vector of unknown
regression parameters and denote

Cov(Y (x),Y (y)) = C(||x− y||); x,y ∈ X.

Then, according to Yaglom (1987), knowing the covariance functionC(.), the spec-
tral distribution function can be obtained from the inversion formula

G(ω+)+G(ω−)

2
=

∫ ∞

0
J1(tω)ωC(t)dt,

whereG(ω+) andG(ω−) denote the right- and left-hand side limits atω andJ1

denotes the Bessel function of first kind and order 1. The spectral distribution func-
tion is positive, monotonically increasing and bounded from above. Approximating
G(.) by means of a step function with positive jumpsa2

i = G(ωi+1)−G(ωi) at pre-
selected pointsωi, i = 0,1, , . . . ,n−1, and changing to polar coordinates(t,ϕ) =
(radius,angle), the polar spectral representation theorem for m.s.c. isotropic ran-
dom fields tells us that the error process may be approximatedas

ε(t,ϕ) ≈
∞

∑
m=0

{cos(mϕ)
n

∑
i=1

Jm(ωit)Um,i}+
∞

∑
m=1

{sin(mϕ)
n

∑
i=1

Jm(ωit)Vm,i}, (3)

where all the random variablesUm,i andVm,i are uncorrelated, have mean zero, and
their variances are var(Um,i) = var(Vm,i) = dma2

i ; anddm = 1 for m = 0 anddm = 2
for m ≥ 1. By truncating the above series at a sufficiently largem = M, we get an
approximation of our random field in form of a mixed linear model

Y (x) ≈ f(x)T β +g(x)T α + ε0(x). (4)

From (3) it becomes clear that the components of the additional regression vector
g(·) are made up of cosine-sine-Bessel surface harmonics. The idea to approximate
the spatial random field by means of a large regression model with random coef-
ficients was first proposed by Fedorov (1996), who approximated the random field
by the so-called Karhunen-Loeve-Eigen-expansion, which is in general much more
complicated to calculate than our approach via the polar spectral approximation.
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3 Classical Bayesian experimental design problem

Starting from our spatial mixed linear model (4) we may gain further flexibility with
a Bayesian approach incorporating prior knowledge on the trend. To this we assume
that the regression parameter vectorβ is random with

E(β ) = µ ∈ ℜr, Cov(β ) = Φ .

This is exactly in the spirit of Omre (1987) who introduced Bayesian kriging this
way. He used physical process knowledge to arrive at “qualified guesses” for the
first and second order moments,µ andΦ . On the other hand, the state of prior igno-
rance or non-informativity can be modelled by settingµ = 0 and lettingΦ−1 tend
to the matrix of zeroes, thus passing the “Bayesian bridge” to universal kriging, see
Omre and Halvorsen (1989).
Now, combining (4) with Bayesian prior knowledge, we arriveat theBayesian spa-
tial linear model (BSLM)

Y (x) = h(x)T γ + ε0(x), (5)

where

h(x) =

(

f(x)
g(x)

)

,γ =

(

β
α

)

,

Eγ =

(

µ
0

)

=: γ0,Cov(γ) =

(

Φ 0
0 A

)

=: Γ .

Here ε0(x) is white-noise with varianceσ2
0 and A denotes the covariance matrix

of α, resulting from the polar spectral approximation of the random field. Sp̈ock
and Pilz (2010) demonstrate that Bayesian linear trend estimation in the above
BSLM actually approximates Bayesian linear kriging in the original model abitrar-
ily closely. The same is true for the total mean squared error(TMSEP) of the trend
prediction and the TMSEP of Bayesian kriging.
Thus taking the TMSEP of the trend prediction in the approximating model as a
substitute for the Bayes kriging TMSEP we arrive at the following classical experi-
mental design problem for so-called I-optimality:

∫

X
h(x)T (HT (dn)H(dn)+σ2

0Γ −1)−1h(x)dx → min
dn

. (6)

Heredn = {x1,x2, . . . ,xn} collects either the design points to be added to the mon-
itoring network or in the case of reducing the network the design points remaining
in the monitoring network.H(dn) expresses the dependence of the design matrix
H = (h(xi)

T )i=1,2,...,n on the design points in the setdn.
At this point we advise the reader not familiar with Bayesianexperimental design
theory to read the Appendix of Spöck and Pilz (2010). The key point in this theory is
that the above so-called concrete design problem, which does not have a convenient
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mathematical structure, may be extended to a so-called continuous design problem
that has the nice feature to be a convex optimization problem. Thus, the whole ap-
paratus of convex optimization theory is available to approximately solve the above
design problem for I-optimality. In particular, directional derivatives may be calcu-
lated and optimal continuous designs may be found by steepest descent algorithms.
Continuous designs are just probability measuresξ on X and may be rounded to
exact designsdn. Defining the so-called continuous Bayesian information matrix

MB(ξ ) =

∫

X
h(x)h(x)T ξ (dx)+

σ2
0

n
Γ −1 (7)

and

U =
∫

X
h(x)h(x)T dx, (8)

it may be shown that the set of all such information matrices is convex and compact
and that the extended design functional

Ψ(MB(ξ )) = tr(UMB(ξ )−1) (9)

is convex and continuous inMB(ξ ). The above design functionalΨ(.) thus attains
its minimum at a designξ ∗ ∈ Ξ , whereΞ is the set of all probability measures
defined on the compact design regionX, see Pilz (1991). The minimization ofΨ(·)
is the continuous analogue to our original design problem (6). The closeness of
exact designsdn to the optimal continuous designξ ∗ may be judged by means of a
well-known efficiency formula, see Appendix of Spöck and Pilz (2010).

4 The Smith and Zhu design criterion

In real world applications the isotropic covariance functionCθ (t) is always uncertain
and must be estimated. The kriging predictor used is then based on this estimated
covariance functionCθ̂ (t). Thus, the kriging predictor is always a plug-in predictor
and the reported (plug-in) kriging variance underestimates the true variance of this
plug-in predictor.
Smith and Zhu (2004) consider spatial sampling design by means of minimizing the
average of the expected lengths of 1−α predictive intervals:

∫

X
E(length of predictive interval atx0)dx0. (10)

Their predictors of theα/2 and 1−α/2 quantiles of the predictive distributions
are selected in such a way that the corresponding predictiveintervals have coverage
probability bias 0. The predictors of the mentioned quantiles are essentially the plug-
in kriging predictors based on restricted maximum likelihood (REML) estimation of
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the covariance function plus/minus a scaled plug-in kriging standard error term that
is corrected to take account of REML estimation. Based on Laplace approximation
it can be shown that this design criterion, up to the orderO(n−2), wheren is the
number of data, is equivalent to:

∫

X
[σ2

θ (x0)+ tr(κ−1
θ {

∂λθ (x0)

∂θ T }T Kθ
∂λθ (x0)

∂θ T )+ (11)

z2
1−α/2{

∂σθ (x0)

∂θ
}T κ−1

θ
∂σθ (x0)

∂θ
]dx0 → Min

dn={x1,...,xn}

Here

(κθ )i, j = (tr(Wθ
∂Kθ
∂θi

Wθ
∂Kθ
∂θ j

))i, j (12)

is the Fisher information matrix for REML,

Wθ = K−1
θ −K−1

θ F(FT K−1
θ F)−1FT K−1

θ ,

z1−α/2 is the 1−α/2-quantile of the standard normal distribution,σ2
θ (x0) is the

universal kriging variance atx0 andλθ (x0) is the universal kriging weights vector
for prediction atx0. This design criterion takes account of both prediction accuracy
and covariance uncertainty.
Sections 2 and 3 have demonstrated that by using the BSLM (5) as approximation to
the true isotropic random field the design criterion of I-optimality can be completely
expressed in terms of the (concrete) Bayesian information matrix

MB = HT H+σ2
0Γ −1.

Going from this information matrix to its continuous version MB(ξ ) according to
(7), the extended design functionalΨ(MB(ξ )) = tr(UMB(ξ )−1) becomes contin-
uous and convex on the compact and convex set of all such information matrices
MB(ξ ). This was the reason why classical convex experimental design algorithms
could be used to find optimal spatial sampling designs minimizing the criterion (9).
In Sp̈ock et al. (2012) it is shown that the Smith and Zhu design criterion has also
some favourable properties, so that classical convex experimental design theory can
be applied to this design criterion, too:

• Expression (11) can be expressed completely in terms of the Bayesian informa-
tion matrixMB.

• The design functional is continuous on the convex and compact set of allMB(ξ )
and has some advantageous properties according to which classical experimental
design algorithms may be used in order to find spatial sampling designs.

Assuming the BSLM (5) the covariance function is actually parametrized through
the diagonal matrixA and the nugget varianceσ2

0 . Since the Smith and Zhu design
criterion assumes the covariance parameters to be estimated by restricted maximum
likelihood we actually estimate this diagonal matrixA andσ2

0 by this methodology.
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The a priori covariance matrixΦ = cov(β ) must be given almost infinite diagonal
values because the Smith and Zhu (2004) approach assumes thetrend parameter
vectorβ to be estimated by generalized least squares andΦ → ∞ bridges the gap
from Bayesian linear to generalized least squares trend estimation. The a priori mean
µ = E(β ) can be set to0 then.
According to the polar spectral representation (3) severalvalues in the diagonal
matrix A are identical:

A = diag({dma2
i }m=0,...,M;i=1,...,n;k=1,2), (13)

where the definitions ofdm anda2
i and the indexing derive from the polar spectral

representation (3). For restricted maximum likelihood estimation ofA we have two
possibilities:

• We can leave theai’s unspecified: This approach is almost nonparametric because
a lot ofai’s and corresponding frequencieswi are needed to get the isotropic ran-
dom field properly approximated, and corresponds to a semiparametric estima-
tion of the spectral distribution function via a step function.

• We can specify a parametric model for thea2
i ’s: The polar spectral density func-

tion for an isotropic random field overℜ2 possesing for example an exponential
covariance functionB(h) = Cexp(−3h

α ) is given by

g(w) =
C 3

α w

(( 3
α )2 +w2)3/2

. (14)

The polar spectral density function is defined just as the first derivative of the
polar spectral distribution functionG(w). A possible parametrization for thea2

i ’s
then is

a2
i =

g(wi)+g(wi−1)

2
(wi −wi−1), i = 1,2, . . . ,n, (15)

where 0= w0 < w1 < .. . ,wn are fixed frequencies.

For the optimization of the Smith and Zhu design criterion wemake use of the same
exchange design algorithms as described in Section 6.1 . We only have to replace
Ψ(MB(ξ )) by the Smith an Zhu design functional given in Spöck et al. (2012).

5 Spatial sampling design for trans-Gaussian kriging

In trans-Gaussian kriging the originally positive valued dataZ(xi), i = 1,2, . . . ,n are
transformed to Gaussianity by means of the Box-Cox transformation

gλ (z) =

{

zλ−1
λ : λ 6= 0

log(z) : λ = 0
.
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Let Z = (Z(x1),Z(x2), . . . ,Z(xn))
T be the vector of original data and

Y = (gλ (Z(x1)),gλ (Z(x2)), . . . ,gλ (Z(xn)))
T (16)

be the vector of transformed data. The predictive density for trans-Gaussian kriging
at a locationx0 then may be written:

ϕ(gλ (z);ŶOK(x0),σ2
OK(x0))∗ zλ−1, (17)

whereϕ(.;ŶOK(x0),σ2
OK(x0)) is the Gaussian density with mean equal to the ordi-

nary kriging predictor̂YOK(x0) at x0 and based on the transformed variablesY, and
variance equal to the ordinary kriging varianceσ2

OK(x0), zλ−1 is the Jacobian of the
Box-Cox transformation.
For spatial sampling design we can consider again the average expected length of
(1− α)-predictive intervals. In order to make the expected lengths of predictive
intervals also dependent on REML-estimation of the covariance function, we can
consider instead of the Gaussian densityϕ(.;ŶOK(x0),σ2

OK(x0)) that unique Gaus-
sian densityϕ whose 0.025- and 0.975-quantiles are given by the Smith and Zhu
(2004) 95% predictive interval

ŶOK(x0) ±

1.96 σθ (x0){1+
1

2σ2
θ (x0)

[tr(κ−1
θ {

∂λθ (x0)

∂θ T }T Kθ
∂λθ (x0)

∂θ T )+

1.962 {
∂σθ (x0)

∂θ
}T κ−1

θ
∂σθ (x0)

∂θ
]}. (18)

Last but not least, to get expected predictive intervals we must replace in the statistic
t(Y) = ŶOK(x0) every variableY (xi) for which we do not have data by its ordinary
kriging predictor based on the available data. Furthermore, we note that in the above
approach we have not taken into account the fact that the transformation parameter
λ itself is estimated too, i.e. by maximum likelihood, and then is plugged-into the
ordinary kriging predictor. In a future paper we will take account of this additional
uncertainty.

6 The spatDesign toolbox

The spatial sampling design and geostatistics toolbox spatDesign has been devel-
oped since 2003. It can be run in both MATLAB and Octave and canbe downloaded
from:

• http://wwwu.uni-klu.ac.at/guspoeck/spatDesignMatlab.zip
• http://wwwu.uni-klu.ac.at/guspoeck/spatDesignOctave.zip

The toolbox underlies the GNU Public Licence Version 3 or higher and thus is
freely available. In MATLAB (www.mathworks.com) the toolbox is fully func-
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tional but assumes that also the MATLAB Optimization and Statistics toolboxes
are installed. In Octave the Smith and Zhu criterion is not implemented. The spa-
tial sampling design functions corresponding to the Smith and Zhu design criterion
need (on a standard PC) a lot of computing time. For this reason this part of the
toolbox has been parallelized to work with NVIDIA GPU’s and the freely avail-
able MATLAB parallelization package GPUmat (www.gp-you.org). If you have a
CUDA (www.nvidia.com) compatible graphics card installedthen this will be au-
tomatically detected and the parallelized algorithms for the Smith and Zhu design
criterion will be used.

6.1 Spatial sampling design software

spatDesign V.2.2.0 implements three design criteria for Bayesian linear kriging,
where the first two are criteria for prediction only, with thecovariance function
assumed to be certain. The third criterion is the Smith and Zhu (2004) criterion tak-
ing account of also the fact that the covariance function is estimated. The Smith and
Zhu design criterion has also been implemented for transformed-Gaussian kriging.
The implemented criteria for prediction only are:

• I-optimality:
Ψ(MB(dn)) = tr(UMB(dn)

−1) → min
dn

(19)

U =
m

∑
i, j=1

h(xi, j)h(xi, j)
T ; (20)

where the integral in (8) has been replaced by the sum over a fine grid of locations
xi, j ∈ X.

• D-optimality:

Ψ(MB(dn)) = |(HT (dn)H(dn)+σ2
0Γ −1)−1| → min

dn
(21)

The Smith and Zhu design criterion can be expressed (according to Sections 4, 5)
also in the form

Ψ(MB(dn)) → min
dn

, (22)

The interested reader is referred to Spöck et al. (2012).
The basic algorithm for calculating spatial sampling designs is an exchange algo-
rithm from experimental design theory going back to Fedorov(1972). Contrary to
the construction of optimal discrete designs, here we cannot prove convergence of
the exact designs to the functional valueΨ(d∗) of an optimal exact designd∗; we
can only guarantee stepwise improvement of a given exact starting design, i.e. the
sequence of functional valuesΨ(dn,s) decreases monotonically with increasing it-
eration indexs. The algorithm is an exchange algorithm improvingn-point designs
and starting from an initial design.
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6.1.1 Exchange algorithm

Step 1. Use some initial designdn,1 = {x1,1, . . . ,xn,1} ∈ Xn of sizen.
Step 2. Beginning withs = 1 form the designdn+1,s = dn,s +(xn+1,s) by adding the
point

xn+1,s = arg min
x∈X

Ψ(MB(dn,s +(x)))

to dn,s.
Then formd j

n,s = dn+1,s − (x j,s), j = 1,2, . . . ,n + 1 and delete that pointx j∗,s from
dn+1,s for which

Ψ(MB(d j∗
n,s)) = min

j∈{1,...,n+1}
Ψ(MB(d j

n,s))).

Repeat Step 2 until the point to be deleted is equivalent to the point to be added.

6.1.2 Generation of an initial design

The initial design is a one-point design which minimizes thedesign functional
among all designs of sizen = 1. Note that such a design exists since the Bayesian
information matrix is positive definite even for designs of size n = 1.

Step 1. Choosex1 ∈ X such that
x1 = arg minx∈XΨ(MB((x))), and setd1 = (x1).
Step 2. Beginning withi = 1, findxi+1 such that
xi+1 = arg minx∈XΨ(MB(di +(x))) and formdi+1 = di +(xi+1).
Continue withi replaced byi+1 until i+1 = n.
Step 3. Ifi+1 = n then stop and take
dn,1 = {x1, . . . ,xn} as an initial design.

6.1.3 Combination of the above two algorithms

It is a good idea to combine the initial design algorithm and the exchange algorithm
in the following way:

Step 1. Start with the initial design algorithm and find a design with one first de-
sign point.
Step 2. Having found a design withm ≥ 1 design points apply the exchange algo-
rithm to this design to improve it.
Step 3. Add to the design from Step 2 one further design point by means of the
initial design algorithm to getm+1 design points.
Step 4. Go back to Step 2 and iterate Step 2 and Step 3 until you have foundn
desired design points.



Spatial sampling design with skew distributions 11

6.1.4 Reduction of experimental designs

Often it is desired to reduce a given experimental designd = {x1,x2, . . . ,xn} to one
including onlym < n design points fromd:

Step 1. Delete that design pointx j∗ from d for which
x j∗ = argminx j∈d Ψ(MB(d − (x j))), and set
d := d − (x j∗).
Step 2. Iterate Step 1 until the designd contains onlym design points.

Also this algorithm may be combined with an improvement stepsimilar to the ex-
change algorithm.

6.1.5 Inverse of the information matrix

The calculation of exact designs requires in every step the calculation of the in-
verses of the information matricesMB(dn,s) or MB(dn+1,s). In the next Sections we
will see that these information matrices can have a quite high dimension of about
3000×3000. So, how can one invert such large matrices in affordable time? There
is computationally no need to make explicit use of numericalmatrix inversion algo-
rithms, when one considers the update formulas (13.26) and (13.28) in Pilz (1991):

MB(dn,s +(x))−1 =
n+1

n
{MB(dn,s)

−1−
MB(dn,s)

−1h(x)h(x)T MB(dn,s)
−1

n+h(x)T MB(dn,s)−1h(x)
},

MB(d j
n,s)

−1 =
n

n+1
{MB(dn+1,s)

−1 +
MB(dn+1,s)

−1h(x j,s)h(x j,s)
T MB(dn+1,s)

−1

n+1−h(x j,s)T MB(dn+1,s)−1h(x j,s)
}

Obviously, only matrix- and vector multiplications are needed in these update for-
mulae.

6.1.6 Basic sampling design functions

The basic spatial sampling design functions are:

• OPTIMALLY DELETE N LOCATIONS FROM POOLDELETE.m
• OPTIMALLY ADD N LOCATIONS FROM POOLCOMPLETE.m
• OPTIMALLY ADD N LOCATIONS FROM POOLADD.m
• OPTIMALLY IMPROVE POOLDELETEFROM POOLCOMPLETE.m
• OPTIMALLY IMPROVE POOLDELETEFROM POOLADD.m

The names of these functions are self-explanatory: “Pooldelete” is the discrete pool
of locations that are allowed to be deleted from the design. “Poolcomplete” is
the complete compact area of points fromX allowed to be added to the design.
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“Pooladd” is the discrete pool of locations that are allowedto be added to the de-
sign. “Improve” means the exchange algorithm, where locations from “Pooldelete”
may either be exchanged by locations from “Poolcomplete” orfrom “Pooladd” and
the total number of sampling locations remains constant.

7 An example session

The purpose of this section is to demonstrate some capabilities of the spatDesign
toolbox. The most important Matlab function calls related to sampling design with
the Smith and Zhu design criterion are given. The data set considered is a rainfall
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Fig. 1 Left: The 36 sampling locations of the Upper Austria rainfall data set set. Right: The 36
time series of average monthly rainfall at each station.

data set from Upper Austria. The monitoring network comprises 36 locations. Av-
erage monthly rainfall has been measured at each location starting in January 1994
and ending in December 2009. In Fig. 1 we see that there are obviously areas in the
design region that look very empty, having no sampling locations.

7.1 Preparatory calculations

Next let us calculate from the above time series for each station the mean rainfall
over the years, as well as the residual rainfall, for each of the 12 months, Fig. 2.
We proceed by calculating from the rain residuals for each ofthe 12 months the
empirical semivariogram and the semivariogram standardized by the variance of
each month, Fig. 3. We next calculate for each station the mean of rain residuals,
the empirical semivariogram corresponding to these means and a fitted exponential
semivariogram, Fig. 3. The fact that the standardized semivariograms are almost the
same for all months means that the space-time random field is separable and that
we can use one and the same semivariogram (the grey one in the Right of Fig. 3)
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Fig. 2 Left: The average monthly rainfall over the years at each of the 36 stations, for each of the
12 months. Right: The residual rainfall at each of the 36 stations,for each of the 12 months.
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Fig. 3 Left: Standardized empirical semivariograms for all of the 12 months and a fitted exponen-
tial semivariogram (grey). Right: Empirical semivariogram for the mean of rain residuals and a
fitted exponential semivariogram (grey).

for doing spatial sampling design for each month. In the nextstep we calculate the
polar spectral distribution function corresponding to this semivariogram. Obviously,
this spectral distribution function almost attains its maximum of 1735.2 atw = 47.
We now select the frequencieswi, i = 1,2, . . . ,34 , calculate an approximation to
the spectral distribution function via a step function (thesteps are thea2

i ) and check
whether this approximation to the spectral distribution function provides a good fit
to the original covariance function , Fig. 4.

load wscaled
plotspectraldist(0:0.5:47,delta0rain)
w=wscaled*47;
[wrain,deltarain]=expstep(w,delta0rain(3),delta0rain(2)); % the discrete
spectrum
hold on, approxspectraldist(wrain,deltarain)
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plotcovarianceapprox(wrain,45,deltarain,delta0rain,12.5:0.05:17,73,12.5,12.5,
15,70.8,73); %the worst approximating covariance function
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Fig. 4 Left: Polar spectral distribution function and its approximation (grey). Right: True covari-
ance function (black) and its worst approximation (grey).

A look at the approximating covariance function in Fig. 4. shows that at the origin
the difference between the true covariance function and theapproximating covari-
ance function is 20. This is small scale variation that the approximating covariance
function does not take into account. Later in spatial sampling design we will add
this value of 20 to the nugget effect 106.8 of the true covariance function. Thus,
20+106.8 is the variance of the uncorrelated error processε0(x) in our BSLM (5).
We now have all the quantities that we need in order to do spatial sampling design on
the basis of our Bayesian spatial linear model (5), corresponding to the assumption
of Gaussianity of observations.

7.2 Optimal design for the BSLM

We consider to add 14 additional sampling locations from thecomplete design re-
gion X to the available grid of 36 sampling locations, Fig. 5.

[xadd,yadd,avglengthpredint]=optimally addn locationsfrom poolcomplete(
{},..............................................% no external drift
[],................................................% no need to specify the matrixU
xyelevation(:,1),xyelevation(:,2),ones(36,1),..% theavailable data locations
20+delta0rain(1),.......................% the variance of the uncorrelated error
...................................................% processε0(x)
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[1000000,0,0;0,0.0000001,0;0,0,0.0000001],..% the a priori variance of
...................................................% the constant trend must be given
...................................................% almost infinite variance; no linear drift
wrain,.........................................% thefrequencies of the Bessel harmonics
45,..............................................% the largest angular frequency
deltarain,....................................% thea2

i
delta0rain,..................................% the parameters of the
...................................................% exponential covariance function
1,................................................%the Box-Cox transformation parameter
...................................................% (no transformation, Gaussian kriging)
14,..............................................% we want to add 14 samples
12.5,15,70.8,73,.........................% the size ofthe design region
10,..............................................% maximally iterate 10 times in the exchange
...................................................% step
boundary,...................................% the polygonal design region
17,17,.........................................% discretization in Easting and Northing
...................................................% when considering new samples
’z’,..............................................%we apply the Smith and Zhu (2004) design
...................................................% criterion to ordinary kriging
0.................................................%no graphical output
);

Fig. 5. shows the optimal 8- and 14 point designs. Obviously,certain locations
have been selected with multiplicities larger than 1. The reason is that the Smith
and Zhu design criterion does not only take account of best prediction but also of
covariance estimation; in order to get the nugget effect andthe behaviour of the
covariance function close to its origin well estimated locations are needed in the
optimal design which are close to each other. Fig. 6 plots thedecrease of the average
of the expected lenghts of the 95% predictive intervals whenadding up to 14 design
locations.

The calculation of the optimal 14 point design takes about one week, on an Intel
i7 8 Core CPU and a NVIDIA 580 GPU with 1.6 Gb RAM. Similar calculations for
the simpler design functional (19) take, without NVIDIA CUDA support, one day.

7.3 Design for the trans-Gaussian kriging

In the above example session we have assumed the data to be Gaussian and have in-
tended to use ordinary kriging for prediction, although, asis visible from Fig. 2, the
data are not Gaussian. Thus, we will consider now the assumption that the rainfall
residuals can be transformed to Gaussianity by means of a Box-Cox transformation.
Because the Box-Cox transformation works only for positivevalued data we have
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Fig. 5 Left: Optimal 8 point design for Gaussian kriging. Right: Optimal14 point design for
Gaussian kriging. Certain locations have been selected with multiplicities larger than 1.

Fig. 6 Average of the ex-
pected lengths of 95% predic-
tive intervals, when adding up
to 14 design locations.
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to add a positive offset to the 12 monthly sets of rainfall residuals. To identify the
appropriate offset and optimal Box-Cox transformation parameterλ0 we perform a
sequence of Lilliefors tests for Gaussianity on the transformed rainfall residuals. We
then retain this offset and the corresponding Box-Cox transformation parameterλ0,
where the sum of the 12 p-values from the Lilliefors tests attains its maximum. Fig.
7 gives the corresponding surfaces of the sum of p-values andnumber of rejected
hypotheses for Gaussianity at the 10% significance level. According to these figures
the optimal parameters are chosen as:

offset=53
λ0 = −0.25

Obviously, for these parameters only one hypothesis of Gaussianity is rejected at
the 10% significance level.
We now proceed as in the Gaussian case. Fig. 8 shows standardized empirical semi-
variograms of the Box-Cox transformed rain residuals and the semivariogram of
the Box-Cox transformed means of rain residuals. Interestingly, the fitted semivari-
ograms in this figure are just scaled versions of the fitted semivariograms from Fig.
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Fig. 7 Left: Sum of the p-values, depending on the transformation parameterλ and the offset.
Right: Number of rejected hypotheses of Gaussianity at 10% significance level, depending on the
transformation parameterλ and the offset.

3. The parameters of the semivariogram on the Right of Fig. 8 are delta0Box=[
0.0047, 0.0768, 4.5000, 0, 0]. By means of

load wscaled
figure
plotspectraldist(0:0.5:50,delta0Box)
wBox=wscaled*50;
[wBox,deltaBox]=expstep(wBox,delta0Box(3),delta0Box(2));
hold on, approxspectraldist(wBox,deltaBox)
figure
plotcovarianceapprox(wBox,45,deltaBox,delta0Box,12.5:0.05:17,73,12.5,
12.5,15,70.8,73)

we go on to calculate the spectral distribution function andits step-wise approx-
imation and the worst approximating covariance function. We note that close to the
origin h = 0 the difference between the true covariance function and its approxima-
tion is 0.001. Finally, the function call

[xxresrainBox,yyresrainBox,avglengthpredintBox]=
optimally addn locationsfrom poolcomplete({},[],xyelevation(:,1),
xyelevation(:,2),meanresrainmeanmonth,delta0Box(1)+0.001,
[10000000000000,0,0;0,0.00000000000001,0;0,0,0.00000000000001],
wBox,45,deltaBox,delta0Box,lambda0,14,12.5,15,70.8,73,
10,boundary,17,17,’z’,0);

calculates the optimal 14 point design. Fig. 9 visualizes optimal 8- and 14-point
designs for trans-Gaussian kriging. Fig. 10 gives the expected lengths of 95% pre-
dictive intervals.
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Fig. 8 Left: Standardized empirical semivariograms of the transformed rain residuals for all of the
12 months and a fitted exponential semivariogram (grey). Right:Empirical semivariogram for the
transformed mean of rain residuals and a fitted exponential semivariogram (grey).

Fig. 9 Left: Optimal 8 point design for trans-Gaussian kriging. Right: Optimal 14 point design for
trans-Gaussian kriging. Certain locations have been selected with multiplicities larger than 1.
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Fig. 10 Left: Decrease of the average expected lengths of 95% predictive intervals, when adding
up to 14 design locations. Right: Expected lengths of 95% predictive intervals corresponding to
the optimal 14 point design.

8 Conclusion

Obviously, the designs for trans-Gaussian kriging in Fig. 9are completely different
from the designs for Gaussian kriging in Fig. 5. Whereas the designs in Fig. 5 are
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much more space-filling the design locations in Fig. 9 have been selected in areas
that have high average value of rainfall. This fact becomes more clear when we com-
pare Fig. 9 to Fig. 11, where the median rainfall from the predictive distributions of
trans-Gaussian kriging is visualized. Obviously, in areaswith high average rainfall
the average expected length of 95% predictive intervals canbe most decreased. This
fact results from a fundamental difference between designsfor Gaussian random
fields and designs for trans-Gaussian kriging: Designs for trans-Gaussian kriging
are dependent also on the data, through the ordinary krigingpredictor in formula
(18).
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Fig. 11 Left: The median rainfall field+53 calculated from the predictive distributions of trans-
Gaussian kriging applied to the 36 means of rainfall residuals. Right: Expected lengths of 95%
predictive intervals corresponding to the trans-Gaussian kriging from the left figure.
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