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Abstract Traditional Earth modeling practice uses 3D-geocellular grids to 
represent reservoir volumes. The gridding parameters are required to be estimated 
upfront, often difficult to infer and commonly hastily set. Often, little thought is 
given in geocellular parameterization to the appropriateness of the specified 
cellular dimensions and layering styles, which makes it a time consuming and 
costly trial-and-error exercise or a compromise. We present a new technology that 
resolves many common geocellular parameterization and modeling issues by first 
generating grid-less 3D property models within a sealed structural framework. The 
geological properties within a volume of subsurface are represented by 
distributing a plurality of data points in the absence of the grid with the notion of 
geological continuity and directionality given by a maximum continuity field 
(MCF). In many depositional systems, changes exist in the local direction of 
maximum continuity; however, traditional variogram implementation assumes a 
single maximum direction of continuity. Our method supports defining both a 
local direction of maximum continuity and the associated correlation distance 
without a standard grid. We validate and benchmark technology by modeling the 
permeability distribution in a synthetic, complex fluvial system, and combining a 
set of user-defined MCFs and control well-data points. Finally, we present the 
method for Assisted Property Modeling that provides the ability to build, create 
and edit MCF vector maps quickly, insert instantly and interactively guidelines 
corresponding to dominant geological continuity of any shape and works with a 
number of different underlying estimation and simulation methods to create 
reservoir properties. 
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1 Introduction 

Traditional reservoir modeling techniques use simplified two-point statistics to 
describe the pattern of spatial variation in geological properties. Such techniques 
implement a variogram model that quantifies the average of expected variability 
as a function of distance and direction. In reservoirs, where the geological 
characteristics are very continuous and easily correlated from well to well, the 
range (or scale) of correlation will be large while in reservoirs, where the 
geological characteristics change quickly over short distances, the correlation 
scales will be shorter. The later phenomenon is very common in sedimentary 
environments, where the primary mechanism of transport during deposition is 
water, resulting in highly channelized structures (e.g. deltaic channels, fluvial 
deposits, turbidities). These environments usually demonstrate a large degree of 
local anisotropy and of correlation variation between directions along the channel 
axis and perpendicular to the channel axis.  
 
In the attempt to overcome deficiencies of geomodeling based on conventional 
geostatistics, advances have been made within the last decade in the form of multi-
point (geo)statistics (MPS). The approach computes correlations between multiple 
locations at the same time to reproduce volume-variance relationship and model 
realizations, conditioned to local sample data [1, 2]. The MPS techniques are 
rapidly growing in popularity offering the modeler the ability to create geological 
models with complex geometries, while conditioning to large amounts of well and 
seismic data. However, as pointed out in [3], MPS is still a relatively new topic, 
which has had a long academic history and is now just finding its way into 
commercial software. They also pointed out several deficiencies in current 
implementations related to 1) performance, 2) training image generation, and 3) 
non-stationarity.  

 
Recently, technology for 3D volumetric modeling of geological properties, using a 
Maximum Continuity Field (MCF) has been proposed [4]. The geological 
properties are represented within a volume of the subsurface by distributing a 
plurality of data points in the absence of the grid with the notion of geological 
continuity and directionality represented by MCF, hence entitled and hereafter 
referred as to Point-Vector (PV) method. It introduces several game-changing 
components to the area of geomodeling: 
 Direct control over local continuity directions is controlled using a 

predefined azimuth map and the local dip (an angle from the 
horizontal/azimuth plane) of the horizons. The Fault Displacement Field 
(FDF), annotated in Fig. 5 with symbol FT (fault throw) can be, for 
example, calculated from the underlying seismic amplitude data [5].  

 Interactive operation with “geologically intuitive” datasets, such as layering 
intervals, projection maps and hand drawings via the notion of MCF. 

 Retention of the maximum fidelity of geological model by postponing the 
creation of grid/mesh until the final stage of (static) model building, 
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immediately before integrating into dynamic model. The reservoir property 
modeling does not need a standard grid but only the “correct” distance 
between the points to estimate/simulate the property and data around it. 

 
This paper describes a novel method that has a potential to resolve most of the 
common geocellular modeling issues by implementing the concept of 
interpolation or simulation of reservoir properties using Local Continuity 
Directions [4, 6]. We give the demonstration of performance of PV technology by 
generating a gridless model of the distribution of permeability in the simplified 
fluvial system. The validation model is derived from the complex synthetic field-
case, combining a set of user-defined MCF and control data points (i.e. well 
location constraints). We further introduce and demonstrate the method to assist 
interaction with defining vector field and properties from well data that can be 
used as secondary data during Grid-less continuity field interpolation. The method 
allows the user to interactively draw guidelines of any shape which instantly (and 
on-the-fly) creates simple to complex representations (maps) of Maximum 
Continuity vector fields and by adding/honoring well and pseudo-well constraints 
provides valuable control in the process of modeling reservoir properties [7]. 

2 Methods and techniques 

The key to implementation of the ideas of Grid-less modeling of geological 
properties emerges from interpretation of concepts of MCF and their 
implementation into kriging equations for geostatistical estimation. Among the 
numerous interpolation methods, the geostatistical kriging algorithm is commonly 
used in the geosciences. Kriging is an unbiased, linear, spatial least-square 
regression technique that automatically “de-clusters” data to produce best local or 
block estimates with minimized error variance. Figure 1 depicts the principles of 
linear, weighted estimation of the value at location Z0, based on measured values 
at locations Z1 to Z3: 
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where the weights i at locations Zi are calculated from the variogram model. 
Unlike the more conventional linear weighting estimators, the kriging weights, i, 
account for distance and orientation .The constraint for an unbiased estimator is 

satisfied by maintaining   1i . 

 
Almost all available geostatistical software restricts the user to certain types of 
variogram model functions (e.g. spherical, exponential, Gaussian etc.) to ensure 
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that a unique set of kriging weights can always be found and to ”force” a single 
direction of maximum continuity. However, it is very rare in geology to have a 
single direction of maximum continuity representative everywhere. The usual 
approach taken in geostatistical software is to describe the variogram model’s 
ranges as an ellipse (in 2D) or an ellipsoid (in 3D). The user is required to 
nominate a single direction of maximum continuity, applicable to a given sub-
domain, which is related to the orientation of major axis of the ellipse. In 2D the 
direction of minimum continuity is in line with the minor axis of the variogram. In 
3D ellipsoid the intermediate direction is perpendicular to the principal major-
minor plane. Instead of imposing the requirement to nominate the single direction 
of maximum continuity the geostatistical software should allow the user to specify 
local directions of maximum continuity. While a few tools offer this flexibility, 
the proposed PV technology aims to provide such capability also to the industry 
without the constraint of an underlying grid. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Principles of kriging: the geostatistical interpolation method. 
The value of the unsampled location Z0, is estimated based on linear combination 
of measurements at locations Z1 to Z3, where weights i at locations Zi are 
calculated from the variogram model. 

 
 
2.1 Direction of maximum continuity 
 
Geometrically, the spatial continuity is usually associated with the definition of a 
vector, characterized by its location, magnitude and direction. In the method 
presented herewith, the vector gets attached to another spatial property, called the 
correlation length or just length (see Figure 2), along which the magnitude of the 
geological property remains “substantially the same”, say within 10% of its initial 
value.  
 
Furthermore, the axes of the variogram model are simply reoriented and follow 
the local direction of the continuity as specified by the user. As such, the long 
range of the variogram does not pertain to a particular compass direction but is 
rather the range of Local Maximum Continuity. 
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Figure 2 Geometrical definition of the direction of maximum continuity 
as implemented in the PV method. 
 
 
2.2 Interpolation of geological properties 
 
For the calculations outlined in this paper, the PV method is implementing the 
following essential workflow for the interpolation of properties in 3D geological 
models: 
1. Pre-densify a set of points within each stratigraphic interval where MCF is 

stored and the property values are interpolated along with a structural model. 
Conversely points can be generated “on the fly” based on the desired level of 
resolution that may vary within or between intervals. 

2. Define the MCF in the entire point-densified area, using some predefined 
azimuth map (see Figure 6b) and the local dip (an angle from the 
horizontal/azimuth plane) of the horizons. Alternatively, MCF and local dip 
can be calculated “on the fly” if points are not pre-densified. 

3. Pre-process of all the fault displacements in the 3D grid.  
4. Add all the known data points (i.e. spatially located known property, such as 

permeability) to the model, create the covariance neighborhood, and the 
variogram. The covariance calculations take local continuity into account by 
aligning the axes of the variogram with the local continuity direction. 

5. Run an ordinary kriging estimator, using the created covariance 
neighborhood. For each point to estimate, the kriging finds the nearest set of 
known data. The kriging estimation is performed along covariance distances, 
where expected value operator combines the Euclidean norm ij: 
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with xi and xj representing the pair of spatial points (locations) and the index a 
running over the full set of points. 

 
The interpolation of properties, as implemented in PV method is schematically 
depicted (2D case) in Figure 3.  
 
 

 



6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Interpolation of properties in PV method in 2D: the structural 
framework (see section “Validation”) is represented by top and bottom horizons 
(in blue) and fault line (in red). The maximum continuity vectors and fault throws 
are depicted by symbols V and FT, respectively. The data points included in the 
search neighborhood (ellipse depicted in orange) are represented with triangles in 
blue, while red squares represent data points excluded from the search. For clarity, 
2D cross-sectional case is depicted. Notations M, m and I correspond to 
maximum, minimum and intermediate axes of the search volume ellipsoid, 
respectively. 

 
The inserted figure illustrates the definition of the maximum continuity vector 
MCV. Its main parameters are location, magnitude, direction and length, 
representing the correlation length (see Figure 3). The MCVs (denoted by V1 and 
V2), associated with the location of pre-densified set of points are positioned at 
the centers of search ellipses (or ellipsoids in 3D). The data points, detected inside 
the search ellipse (“blue” triangles) are considered in the interpolation along the 
MCV while the data outside the ellipse (“red” squares) are not included. The 
relative dimensions of the search ellipsoid, i.e. the ratios between major, 
intermediate and minor axis length, representing the “local” anisotropy factor, are 
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subject to optimization by the user (see section “Validation”). In a faulted 
reservoir the property associated with MCV V2 is interpolated across the fault 
line, following the fault throw vector FT. In addition, Figure 3 depicts examples of 
geocellular grids (structured or unstructured) that can be rendered at the end of the 
geo-modeling process.   

3 Validation 

The test case used for benchmark exercise of the PV method was built based on a 
complete synthetic model of the Brugge Field. The original high-resolution model 
was developed by TNO in the Netherlands as a benchmark project to test the use 
of flooding optimization and history-matching methods [8]. Essential properties 
like sedimentary facies, porosity and permeability, net-to-gross and water 
saturation were created for the purpose of generating wells logs in the 30 wells. 
The structure of the Brugge Field consists of an elongated half-dome and an 
internal fault with a modest throw, represented in Figure 4 by fault vector field 
with displacement of ~50 m.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 3D visualization of the fault displacement vector field with the 
constant throw of ~50 m. Dimensions given in meters. 

Stratigraphically, the Brugge Field combines four different depositional 
environments: fluvial (discrete sand bodies in shale), lower and upper shore face 
(contains loggers, i.e. carbonate concretions) and sandy shelf, with irregular 
carbonate patches. We use the fluvial reservoir zone to build the PV benchmark 
model (see Figure 5). 
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Figure 5 Structural model of Brugge fluvial reservoir depicting the two 
horizons (top-green, bottom-yellow), faults surface (brown) and a point-set with 
permeability log data. 
 
 
In Figure 6a, we give an example of facies realization for the Brugge fluvial 
reservoir zone. The blue area represents the sand body (pay zone) distributed on 
shale (non-pay zone in red). Although not required by the PV method, we use the 
facies distribution as a basis or constraint for the generation of vector field to 
emulate a certain “pre-knowledge” on the geological structure.  
 
Figure 6b represents MCF defined on virtually regular distribution of points (x  
42 m; y  91 m). (Note; a regular distribution is not required!). No particular 
continuity information (i.e. with depicted vectors) was assumed for the shale zone, 
only for the discrete sand bodies. In Figure 6c the MCF directionality (i.e. azimuth 
angles with respect to true north or y-axis) is visualized by applying a natural 
neighbor (Sibson) interpolation [9]. The “black” & “white” areas designate two 
spatially detached shale zones with two distinguished dimensions of data search 
volume, with no preferential continuity direction, hence represented by spheres 
with different radii. The “gray” zone corresponds to the main sand body with 
defined main preferential directions of MCF, resulting in ellipsoidal data search 
volume and the main axis aligned with the orientation of MCF. Furthermore, the 
dual mode of the data search volumes as defined in the process of kriging 
estimation is visualized in 3D in Figure 6d: the shale and sand bodies are 
represented by the (small) spheres and ellipsoids, respectively, indicating one 
particular case of local directional anisotropy used for interpolation. We only use 
the azimuth component from the MCF; the dipping angle is calculated to the 
normal direction relative to local curvature of the horizon. 
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Figure 6 Definition of Brugge fluvial reservoir MCF: a) facies realization 
used to generate spatially constrained MCF (sand in “blue”, shale in “red”), b) the 
generated MCF, depicted with MCV’s, c) MCF interpolated by natural neighbor 
(Sibson) interpolation and d) 3D visualization of data search volumes as defined in 
the process of kriging estimation. Dimensions of panels a) and b) given in meters. 
 
 
3.1 Results 
 
The PV method allows the user to define variable sizes of search ellipsoids 
throughout the model VOI. By this notion, a single-size search sphere was defined 
for the shale facies, where no particular continuity information was assumed (see 
Figure 6b). On the other hand a variable size of the search ellipsoid and different 
anisotropy factors (i.e. ratios between the length of the major direction and minor 
direction of the search ellipsoid) was considered for the sand zone to validate the 
effect on the interpolation. The length in intermediate direction was fixed at 50 ft.  
 
Figure 7 depicts permeability fields calculated as a function of variable search 
ellipsoid size and presented as the flattened 2D maps with marked well locations 
and the presence of the fault in the model. For better visualization permeability 
maps were additionally smoothed by a recursive Gaussian filter, using two 
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samples as the filter half-width. Qualitatively, the top row of Figure 7 
(major/minor = 100/100; anisotropy ratio of 1:1) can be interpreted for example as 
the case with entirely uncertain (and less trusted) MCF data, while the bottom row 
(major/minor = 10000/1000; anisotropy ratio of 10:1) corresponds to the opposite 
situation. The two middle rows represent cases with “intermediate” uncertainty in 
MCF, corresponding to major/minor = 300/100 with anisotropy ratio of 3:1 and 
major/minor = 2500/500 with anisotropy ratio of 5:1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 Permeability maps calculated for Brugge fluvial system with the 
PV method. Anisotropy ratio values of the search ellipsoids (rows): top – 1:1, 
middle – 3:1 and 5:1 and bottom – 10:1. Dimensions given in meters, color-bar in 
mD. 
 
 
It is important to emphasize that the permeability models given in Figure 7 are 
conceptually different from any property model based on conventional geocellular 
grid: the permeability calculated here represents a blocked adjusted spatial 
variable, where the VOI of the structural model is technically represented by a 
“single cell” and not the discretized grid of cells. Such interpretation allows the 
user to superimpose any rendition of structured or unstructured computational grid 
prior to reservoir simulation, without compromising the “original” resolution of 
the model.   

a) b)

c) d)

a) b)

c) d)
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The computational time, required to obtain permeability maps as given in Figure 7 
appears strongly dependent on the modeled local anisotropy ratio but mostly on 
the size (volume) of the search ellipsoids and the number of searched-for data 
points in the process of interpolation (see Figure 8). While the case with 
anisotropy ratio 3:1 requires ~30 min to complete on a Linux-based Dual core 2.4 
GHz desktop with 8 GB RAM, the cases with anisotropy ratios of 5:1, 7:1 and 
10:1 require ~60 min, ~45 min and ~180 min, respectively. We are considering 
the implementation of multi-threaded kriging interpolation and more efficient data 
search algorithm to reduce computational times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Functional dependence of the computational time of PV grid-
less method on the local anisotropy ratio and the size (volume) of the search 
ellipsoids. Notations M, m and I correspond to maximum, minimum and 
intermediate axes of the search volume ellipsoid, respectively.  

4. Assisted Property Modeling 

Various methods exist that offer the ability to integrate varying azimuthal data 
through the input of a vector field and properties from well data, however, they do 
not allow the user to apply the vector field information as a post-processing step 
directly to regionalized petrophysical property maps of volumes while honoring 
well data (conditional simulation or interpolation), or not (unconditional 
simulation). They are more commonly used as a secondary input data to control 
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the distribution of properties. While these results can be satisfactory, 
modifications are tedious and require reinitiating the entire simulation process. 

Even the definition of the MCF, as given for example as MCF in Figures 4 and 6b, 
may quickly become rigid, inflexible, difficult and time-consuming to construct or 
edit. Changes require redefinition of computational mesh and alternatively, if 
painting the properties, then patterns do not allow for internal changes in 
continuity directions local to the object painted. To facilitate seamless user 
interfacing and interaction the method for Assisted Property Modeling has been 
developed [7] that provides the ability to honor data (conditional) or not 
(unconditional) and use pseudo-wells created on the fly via a simple graphical 
interface which allows the user to build, and create, vector maps quickly. An 
example of an updated property map with well-log data and azimuth guidelines, 
defined by the user as secondary information is given in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 An example of an updated property map, generated with 
Assisted Property Modeling method with well-log data and azimuth guidelines, 
defined by the user as secondary information. 
 
The method is unique in its implementation, allows the user to instantly and 
interactively insert or draw guidelines corresponding to dominant geological 
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continuity of any shape and works with a number of different underlying methods 
including kriging, conditional simulation, collocated co-kriging and collocated co-
simulation in both 2D and 3D.  Furthermore, it is applicable across a variety of 
disciplines including geology, geophysics, earth modeling, and any discipline that 
uses interpolation and/or simulation.  

5. Conclusions 

Current geomodeling practice uses grids to represent 3D reservoir volumes. 
Estimating gridding parameters is a difficult task and commonly results in artifacts 
due to topological constraints and misrepresentation of important aspects of the 
structural framework which may introduce substantial difficulties for dynamic 
reservoir simulator later in the workflow. Moreover, the principles of conventional 
geostatistical practice still require the nomination of a single (average) direction of 
maximum continuity, which makes its use for modeling complex sedimentary 
environments highly challenging if not impossible.  
 
In this paper we present the development and validation of the evolving 
technology for 3D modeling of reservoir properties performed in the absence of a 
geocellular grid. The new method fundamentally advances the geomodeling 
process by postponing the creation the parameters of geocellular grid like cell size, 
number of cells and layering until the very end of the modeling process according 
to the user definition. The notion of standard “grid resolution” becomes obsolete 
and the models, generated in such fashion, retain the maximum available 
resolution and information density, limited only by the resolution of input data 
themselves and structural continuity. Furthermore, the method allows the user an 
efficient control over the local continuity directions and enables interactive 
handling with “geologically intuitive” datasets: layering intervals, projection maps 
and hand drawings by for example using structural guidelines of any shape which 
instantly create representations of Maximum Continuity vector field as spatial 
constraint in the process of modeling reservoir properties 
 
We validate the method by modeling a permeability distribution in a fluvial 
system where we define both, the maximum continuity and the fault displacement 
vector fields based on the geological structure of the model. The results 
demonstrate realistic distributions of permeability and acceptable runtimes.  
 
In the present implementation the variogram is locally aligned with continuity 
direction and the property interpolation is constrained to ordinary kriging along 
the Euclidean-based covariance distance. We continue the efforts to further 
accelerate and enhance the method for Grid-less modeling by: 
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 Integrating with the method for Assisted Property Modeling to facilitate 

the construction of vector maps using a graphical interfacing which 
allows the user to quickly build, create and edit vector maps interactively. 

 Optimizing the efficiency of data-search algorithm. 
 Incorporating techniques in which distances are calculated by honoring 

the underlying geological structures with the “curvilinear” point-to-point 
interpolation [10]. Conceptually, such curvilinear point-to-point 
interpolation is equivalent to the interpolation along the geo-structurally 
constrained geodesic distances in the time domain. 

 Integrating the method with algorithms for automated estimation of the 
fault displacement vector fields from underlying images and structural 
maps [5]. 

 Implementing intelligent data point densification techniques to optimize 
the sampling efficiency with underlying spatial geological structure, 
based on the technology for atomic meshing [11, 12]. 
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