
Using Stochastic Partial Differential Equation
Models for Spatial Reconstruction of Annual
Precipitation

Rikke Ingebrigtsen, Finn Lindgren and Ingelin Steinsland

Abstract This work is motivated by the needs of spatial reconstruction of climate,
especially precipitation, in hydropower planning. Traditionally, statistical models
for reconstruction of precipitation only include topographical attributes, such as al-
titude, in the expectation term and not in the dependency structure. These models
will therefore often miss the topography’s impact on the precipitation level. In this
work, we present a model that incorporate topography, not only as an altitude co-
variate, but also in the covariance structure. Annual precipitation is a non-stationary
process which depends locally on the topography and dominating wind direction.
To allow for flexible enough modelling of the covariance structure, we will use a
stochastic partial differential equation (SPDE) approach to represent the Gaussian
random field. The benefit of such an approach is twofold. First, the SPDE allows
for a non-stationary precipitation field using covariates that capture the local topo-
graphical dependence in a physical meaningful way. Second, we obtain a Markov
representation of the Gaussian random field which makes computations feasible.
The objective of this work is to reconstruct an expectation map (with uncertainty)
of annual precipitation over Southern Norway using data from 2008–2009.
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1 Introduction

In Norway, most of the power production comes from hydropower. Hydropower is
a renewable and clean energy source, and it is desirable to exploit the existing hy-
dropower plants to their full extent. The power production is influenced by changes
in the amount of precipitation from season to season, and from year to year. For
optimal planning of the power production, spatial reconstruction of precipitation is
important, because it is used as input data in hydrological models. However, of even
more importance is realistic modelling, and good understanding, of the uncertainty
in the precipitation process.

The Norwegian climate can be described by extremely large variations in precip-
itation. The wettest part of the country is the western part, where the annual normal
for one of the weather stations is as high as 3573 mm. The amount of precipitation
in this region is among the highest in Europe. The weather station with the lowest
annual normal lies in the eastern part of the country. The amount of precipitation
there is only 278 mm.

This large difference can be explained by the Norwegian topography and pre-
vailing westerly winds. Norway is a mountainous country, where the western and
eastern parts of Southern Norway are separated by the mountain range Langfjella.
Due to the prevailing westerly winds, most of the large weather systems that hit
Norway come from the west. Hence, the weather systems first reach the steep west
coast of Norway. The humid air coming in from over the ocean is forced to ascend
because of the topography, and the air will cool down and release precipitation in
form of rain or snow. This phenomenon is known as orographic precipitation. The
eastern part of Norway is a leeward region in relation to the weather systems coming
from the west, which explains the low annual normals in the “rain shadow”.

In this work, we present a Bayesian hierarchical model for the annual precipi-
tation in Southern Norway. We demonstrate how a non-stationary and anisotropic
spatial model with dependency structure governed by the local topography can be
obtained by the use of a stochastic partial differential equation [2], allowing fast
computations based on Gaussian Markov random fields [4]. The Bayesian inference
is performed using integrated nested Laplace approximations [5]. The approach is a
computationally efficient Bayesian version of geostatistics.

2 Data

The precipitation data used in this study were obtained from a web portal provided
by the the Norwegian Meteorological Institute (eklima.met.no). Daily precip-
itation observations, in the one year period 2008-09-01 – 2009-08-31, from sta-
tions in Southern Norway (up to and included Nord-Trøndelag) were summarized
to obtain the annual values. Stations with incomplete records were removed. The
remaining data set consists of observations from 233 weather stations. The annual
precipitation data are presented in Fig. 1a.
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The data used to model the topography of Southern Norway is based on a 30-
arc-second (1-km) gridded, global digital elevation Model [1]. A topographical map
can be seen in Fig. 1b.

(a) (b)

Fig. 1: (a) : Annual precipitation observations (in cm) from Southern Norway. The
data are from the Norwegian Meteorological Institute and consists of observations
from 233 weather stations. (b) : A topographical map over Southern Norway. The
elevation is in metres.

3 Theory

The main ingredient in our geostatistical model is a Gaussian random field (GRF).
Consider a spatial domain D ∈ Rd , where d is typically 2 or 3, then the random
field {x(sss) : sss ∈D} is Gaussian if all finite dimensional distributions of the field are
Gaussian. More precisely, for all n∈N and all choices of locations sss1, . . . ,sssn ∈D the
vector [x(sss1), . . . ,x(sssn)] follows a multivariate Gaussian distribution. The Gaussian
distribution is characterized by its mean µµµ and covariance matrix ΣΣΣ . A GRF is, in
most cases, specified using a mean function µ(·) and a covariance function C(·, ·),
which yields µµµ = [µ(sssi)]i=1,...,n and ΣΣΣ = [C(sssi,sss j)]i, j=1,...,n for the finite dimensional
distribution. If the covariance function is only a function of the relative position
between two locations, i.e. C(sssi,sss j) = C(sssi − sss j), C is said to be stationary. The
covariance function is isotropic if it only depends on the Euclidean distance between
the locations, i.e. C(sssi,sss j)=C(‖sssi−sss j‖). The covariance function gives the strength
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of the dependency between two locations, and for a stationary and isotropic field this
relationship is the same throughout the domain and in all directions.

Many environmental phenomena are non-stationary and anisotropic by nature.
Thus, in these cases, stationary and isotropic GRFs are inappropriate models. There
have been numerous suggestions on how to model non-stationarity and anisotropy,
and most of them involve some sort of altering of the covariance function. In this
work, we present a non-stationary and anisotropic model for the annual precipitation
data making use of recent developments in the field of statistics.

In 2011, Lindgren et al. [2] introduced a novel approach to geostatistics: the
SPDE approach. The origin of this idea can be dated back to 1954 (and 1963), when
Whittle [6, 7] proved that the solution to the following stochastic partial differential
equation (SPDE)

(κ2−∆)α/2x(sss) = W (sss), sss ∈ Rd , α = ν +d/2, κ > 0, ν > 0, (1)

is a Gaussian random field with Matérn covariance function.1 The innovation pro-
cess W on the right hand side of Eq. (1) is spatial Gaussian white noise, and ∆ is
the Laplace operator.

In [2] this theoretical result is made applicable by the use of a basis function rep-
resentation of the GRF on a triangulation of the domain D (see Fig. 2 for an example
of a triangulation). The approximate stochastic weak solution to the SPDE provides
an explicit link between some Gaussian fields in the Matérn class and the computa-
tional more favorable Gaussian Markov random fields (GMRFs). For details about
the SPDE approach we refer to the original paper [2], and for an introduction to
GMRFs we refer to [4].

One of the main advantages with the SPDE approach is that it allows us to alter
the SPDE instead of the covariance function, yielding e.g. GRFs on manifolds. In
this work, we modify the SPDE in Eq. 1 to obtain a non-stationary and anisotropic
field for the precipitation process. We fix α = 2, when d = 2 this is the same as set-
ting ν = 1 in the Matérn covariance function. The integer value of ν determines the
mean-square differentiability of the field. This parameter influences the predictions
made by the model, but it is usually fixed since it is difficult to identify.

The parameter κ is a scaling parameter. However, it is linked to the range ρ by
the empirically derived relationship ρ =

√
8ν/κ . Here, the spatial correlation is 0.1

at the distance ρ for a GRF with Matérn covariance with parameters κ and ν . Thus,
we can think of κ as a range parameter governing the spatial dependency structure.
Let τ be a variance parameter and rescale the field x to obtain the following SPDE

(κ2−∆)(τx(sss)) = W (sss), sss ∈ R2. (2)

1 The Matérn covariance function between locations sss1 and sss2 in Rd is

C(sss1,sss2) =
σ2

2ν−1Γ (ν)
(κ‖sss2− sss1‖)ν Kν (κ‖sss2− sss1‖),

where Kν is the modified Bessel function of the second kind and order ν > 0. κ > 0 is a scaling
parameter and σ2 is the marginal variance.
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Constrained refined Delaunay triangulation

mesh

Fig. 2: Triangulation of the spatial domain D , in this case Southern Norway. The
red points are the observation locations.

We get a non-stationary and isotropic field by letting the variance and range vary
with location. Define logτ(sss) and logκ(sss) as a sum of basis functions,

logτ(sss) =
p

∑
i=1

Bτ
i (sss)θi, logκ(sss) =

p

∑
i=1

Bκ
i (sss)θi+p, (3)

where the basis functions Bτ
i (·) and Bκ

i (·) are defined on the triangulated domain,
and θ1, . . . ,θ2p are weight parameters.

4 Model

In this section, we present a Bayesian hierarchical model for the annual precipita-
tion data. Let the spatial process {ξ (sss): sss ∈ D}, represent the true level of annual
precipitation in Southern Norway. We assume that this process is observed with ad-
ditive measurement error at the n = 233 weather stations. This yields the following
data model for the observations y1, . . . ,y233



6 Rikke Ingebrigtsen, Finn Lindgren and Ingelin Steinsland

yi = ξ (sssi)+ εi, i = 1, . . . ,233, (4)

where the noise terms ε1, . . . ,ε233 are iid N(0,σ2
ε ), and independent of ξ (·).

Furthermore, we assume that the precipitation process can be modelled by three
parts: an intercept (β ), a smooth effect of altitude (z) and a non-stationary and
anisotropic spatial field (x) capturing the spatial dependency structure. The process
model can be written as

ξ (sss) = β + z(hsss)+ x(sss), sss ∈D , (5)

where we assume a RW2 model for z, where hsss is the elevation at location sss, and a
spatial field as introduced in Eq. 2 and Eq. 3 for x.

The RW2 model is an intrinsic GMRF [4] with one parameter, the precision,
which we denote by τz. This model allows estimation of a smooth non-linear effect
of station elevation. For identifiability with β , z is constrained to integrate to zero.

The SPDE based spatial model x depends on two parameters: κ and τ . To obtain
non-stationarity and anisotropy we let these parameters vary in space as defined in
Eq. (3). We introduce topography in the dependency structure by the use of topo-
graphical explanatory variables as basis functions on the triangulated domain. We
have chosen to use the gradient and elevation field, both based on the digital eleva-
tion model [1]. Hence, p = 3, with basis functions Bτ,κ

1 (·) = 1, Bτ,κ
2 (·) = gradient

and Bτ,κ
3 (·) = elevation, all defined on the mesh in Fig. 2.

To complete the specification of the Bayesian hierarchical model we need a
model for the parameters, θθθ = [β ,σ2

ε ,τz,θ1, . . . ,θ6]. We assume that the parame-
ters are a priori independent with the following distributions

σ2
ε Inverse Gamma

β Gaussian
τz Gamma
θ1, . . . ,θ6 Gaussian

The joint posterior distribution for the parameters θθθ and the precipitation process
ξξξ = [ξ (sss1), . . . ,ξ (sss233)] is given by

π(θθθ ,ξξξ |yyy) ∝ π(yyy|ξξξ ,θθθ)π(ξξξ |θθθ)π(θθθ). (6)

The model defined in this section belongs to a class of latent Gaussian models for
which we can estimate the posterior marginals using integrated nested Laplace ap-
proximations [5]. These efficient approximations are available in the R [3] package
INLA (see www.r-inla.org).

5 Results

We have used the R-INLA package to define the model from Sec. 4 and to perform
the full Bayesian inference.
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In Fig. 3 are the posterior mean and standard deviation of the annual precipita-
tion process ξ . There are clearly different climates in the western and eastern part
of Norway. The inland mountain regions are the driest regions, while the wettest
region is on the west coast, between the two longest fjords: Hardangerfjorden and
Sognefjorden.

It is interesting to observe the standard deviation in Fig. 3b. Clearly, the uncer-
tainty is lowest at the observation locations. However, the interesting part is that
the uncertainty is quite high in the mountain regions. This quantifies what mete-
orologists and hydrologists already know; in the mountain regions there are few
observations, and often large differences in altitude between the prediction location
and the nearest observation locations, this causes high uncertainty in the prediction.

(a) (b)

Fig. 3: Map of the posterior mean (left) and standard deviation (right) of the annual
precipitation process ξ . The annual precipitation is in cm. The coordinate reference
system is UTM33 in kilometres.

Fig. 4 illustrates the non-stationarity and anisotropy of the field. The spatial cor-
relation was computed for a reference point in west, east, north and south of South-
ern Norway. The correlation range is shorter on the west coast, where the terrain is
steep, than in the flat region east in Norway. The correlation range is not the same
in all directions, and it is shortest in the direction where it hits mountains.

The non-linear effect of altitude, z, can be seen in Fig. 5. There is high uncertainty
above 1200 m, because there are no observations at these altitudes.

The posterior estimates of the parameters are in Tab. 1.
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Fig. 4: Spatial correlation between four reference points and all other locations in
the domain.

Table 1: Posterior estimates of the parameters

Parameter Mean Standard deviation

β 46.70 19.28
σ2

ε 0.008748 0.002274
τz 1.188 1.576
θ1 -0.6577 0.1127
θ2 -0.4475 0.1215
θ3 -0.9677 0.2065
θ4 -4.992 0.4286
θ5 -1.843 0.8328
θ6 3.647 0.5889
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Fig. 5: The estimated effect of altitude, z, posterior mean (solid line) and 95% cred-
ible interval (dashed line).

6 Discussion

We have presented a spatial model for annual precipitation in Southern Norway
with dependency structure governed by the local topography. The topography is
included in the dependency structure, in form of gradient and elevation, by use of the
SPDE approach. We obtain a non-stationary and anisotropic model for the annual
precipitation. In Fig. 4 it can be seen that the correlation range is shorter on the steep
west coast, than on the more flat eastern part of the country. It can also be seen that
the mountains in the middle of Norway (Langfjella) prevents an isotropic correlation
structure. This is in agreement with the physical knowledge about the precipitation
pattern over Norway: the mountains block for dependency between east and west.

We could have included more covariates, e.g. wind direction, in our model. How-
ever, the objective has been to study the effect of topography and we have chosen to
ignore other covariates in the current study. The model we present is based on data
from only one year, it would be interesting to use data from more years, as well as
modelling monthly and daily precipitation.
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