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Abstract The limitations of variogram-based simulation programs to model 
complex, yet fairly common, geological elements, e.g. sinuous channels, have 
been recognized for a long time. In applications involving flow simulation, such as 
hydrocarbon reservoir modeling, variogram-based methods typically generate high 
entropy models that commonly misrepresent the heterogeneity and connectivity of 
the actual field under study, and thus may provide incorrect flow performance 
predictions. Several solutions have been proposed to go beyond two-point 
statistics to be able to reproduce geologically realistic patterns. Because limited 
sample data makes the inference of multiple-point statistics extremely challenging, 
the idea of using an external source, namely a training image that describes the 
expected subsurface geology, has been a very attractive solution. However, 
important issues need be addressed to make that idea practical. The first 
fundamental question is: where to find training images, or how to generate them? 
This paper explains why unconditional object-based modeling is a simple but 
comprehensive approach to build training images. Because training images are 
conceptual, objects do not need to be conditioned to actual data, thus complex 
facies geobodies as well as complex interactions among facies can be 
implemented and simulated without dealing with traditional data conditioning 
limitations of object-based modeling.  The selection of appropriate training images 
and their consistency with actual data are also discussed in this paper. The next 
question is about handling non-stationarity: how to impose spatial variations of 
facies proportions or facies geobody geometries? Considering the training image 
as a (stationary) collection of patterns, and then imposing external constraints such 
as variable azimuth fields and facies probability cubes, has proven to be a very 
effective workflow. Finally, an overview of tools, lessons learned and best 
practices to make multiple-point statistics simulation time-efficient is provided, 
and illustrated with various reservoir modeling case studies.  
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Introduction 

Most geological environments, especially clastic environments, are characterized 
by the successive deposition of elements, or geobodies, through time. These 
elements are traditionally grouped into classes, commonly named “depositional 
facies”, based on their lithology, geometry, physical properties, and biological 
structure. For example, the typical depositional facies that characterize a fluvial 
environment are high permeability sand channels, bordered by medium range 
permeability levies and splays, in a low permeability shale matrix. 

Reservoir heterogeneity, and consequently flow performance, is primarily 
controlled by the spatial distribution of depositional facies. Thus, whenever 
depositional facies can be characterized, they should be modeled first, and then 
populated using their corresponding specific porosity and permeability 
distributions. However, this best practice is still not widely adopted by reservoir 
modelers. The main reason is that techniques traditionally used to model 
depositional facies suffer from important limitations: 

• In variogram-based techniques, for example sequential indicator 
simulation, or SIS [2], facies models can be conditioned to well, seismic, 
and production data. But these models are unable to capture the long-range 
continuity and/or sinuosity of facies geobodies, such as channels [8]. As a 
result, they misrepresent reservoir connectivity, and provide poor reservoir 
performance forecasting. 

• In object-based simulation methods [4, 6, 11], in contrast to variogram-
based techniques, simulating relatively realistic facies architecture is 
possible, but data conditioning, either hard well data or exhaustive 
secondary data, is a well-known critical limitation. 

For the last ten years, an alternative facies modeling approach has emerged: 
Multiple-Point Statistics or MPS. The idea is to combine the ability to reproduce 
“shapes” of object-based techniques with the speed and easy data-conditioning of 
variogram-based techniques. For that, MPS needs to infer and reproduce multiple-
point statistics moments way beyond the traditional two-point statistics variogram.  
Because reservoir data are too sparse to infer such high-order statistics, Guardiano 
and Srivastava [3] proposed the use of a training image, i.e. a three-dimensional 
numerical conceptual representation of the facies thought to be present in the 
reservoir to be modeled. Their MPS simulation implementation is the same as 
Sequential Indicator Simulation, except that the variogram is replaced with a 
training image, and kriging is replaced with the following process to estimate local 
conditional facies probabilities: 

1. Look for the n conditioning data (original well data or previously 
simulated cell values) closest to the grid node u to be simulated. These 
conditioning data form a data event dn that is fully characterized by its 
geometrical configuration (the data locations relative to u), and its data 
values (the facies at the data locations). 
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2. Scan the training image to find all training replicates of dn (same 

geometric configuration and same data values as dn). For each replicate, 
record the facies value at the central location of the training replicate. By 
central location, we mean the grid node corresponding to the same relative 
location as u in the data event dn. 

3. The estimated conditional probability of each facies at u is computed as 
the proportion of training dn replicates that have this facies at their central 
locations.  

One major advantage of this implementation is that, as in any pixel-based 
sequential simulation method, in contrast to object-based methods, well data are 
honored exactly. In addition, by capturing multiple-point statistics from the 
training image through the estimation of facies probabilities conditional to 
multiple-point data events, the MPS model reproduces training image patterns. 
However, the repetitive scanning of the training image to estimate facies 
probabilities is extremely time-consuming. To help solve this issue, Strebelle [9] 
introduced a dynamic data structure named search tree to store, prior to the 
simulation, all the conditional probability distributions that could be inferred from 
the training image. He also developed a multiple-grid simulation approach that 
consists in simulating increasingly finer nested grids to capture training image 
patterns at various scales. In this multiple-grid approach, the conditioning data 
search neighborhood is defined by a template that only consists of nodes from the 
nested grid currently simulated. One search tree is built per data template, or per 
nested grid.  

Although Strebelle’s algorithm SNESIM was the first practical implementation 
of MPS simulation, several challenges needed to be addressed: 

• The training image is the core of MPS simulation. But where should 
modelers look for training images, or how can they generate them? 

• The training image can be described as a collection of facies geobody 
patterns that MPS simulation reproduces while honoring conditioning well 
data. How can modelers control the local geometry and the spatial 
distribution of these patterns away from areas strongly influenced by well 
data? 

• Can MPS simulation time and memory requirements decrease while at the 
same time improving training pattern reproduction quality? 

Training Images 

The training image is the main new concept introduced in Multiple-Point 
Geostatistics. It can be defined as a 3D numerical rendering of the interpreted 
reservoir geology. This training image should represent the full range of possible 
dimensions and shapes of the facies geobodies thought to be present in the 
subsurface, as well as the possible associations among those facies geobodies. The 
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training image is a purely conceptual geological model; it contains no absolute 
(only relative) spatial information; it is not conditioned to any hard or soft data.  

Properly digitized photographs of outcrops or sketches hand-drawn by a 
geologist were initially proposed as potential training images of the facies 
geobodies to be modeled in the MPS simulation. However, they would provide 
only 2D map view or cross-section information about the 3D facies elements to be 
modeled. Combining such 2D training images to infer the 3D multiple-point 
statistics moments needed in MPS simulation is an ill-posed exercise, and 
simplistic hypotheses have had limited success [7, 8]. The most straightforward 
way to obtain 3D training images actually consists in generating unconditional 
realizations using an object-based program.  Object-based models, freed from all 
conditioning constraints, are indeed extremely fast and easy to build: 

1. First, the user provides a description of each depositional facies: map 
view and cross-section shape; length, width, thickness and orientation 
distributions; and, if relevant, sinuosity amplitude and wavelength 
distributions. Such information can be derived from well log data and 
good quality seismic data, or can be retrieved from reservoir data bases.   

2. Then the user needs to specify erosion rules and relative lateral and 
vertical positioning constraints, typically derived from core data analysis 
and analogs.  

Figure 1 displays a representative horizontal and vertical cross-section of a 3D 
training image generated using an unconditional object-based method as described 
above, based on sketches hand-drawn by a geologist, and geometric parameters 
derived from a reservoir data base.   

 

 
Figure 1 Example of fluvial-deltaic training image 
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One major challenge is for modelers to select or generate appropriate training 

images. Simple techniques have been proposed to check the consistency of 
training images with actual well data by comparing, for example, variograms 
(vertical variograms only in sparse well environments), or facies transition 
matrices. However, it is very likely that different training images corresponding to 
alternative geological scenarios would match the statistics from the same well data 
set. Training images very often represent a first-order uncertainty, and it is very 
important to account properly for that uncertainty by selecting or generating a 
suite of training images with variable connectivity and heterogeneity. 

Simulation constraints 

When MPS Simulation was originally developed, one important assumption 
underlying the inference of multiple-point statistics moments from the training 
image and their reproduction in the MPS model was the stationarity of the field 
under study: facies relative proportions, geometries, and associations were 
expected to be reasonably homogeneous over the field. In other words, any pattern 
from the training image could be reproduced anywhere in the MPS model as long 
as it could match local conditioning hard data. However, most actual reservoirs are 
not stationary. Stratigraphic and structural events, e.g. sea level cycles or faulting, 
lead to significant spatial variations of facies proportions (horizontal and vertical 
trends), and facies geobody geometry (orientation and size).   

Such variations can be inferred from well and/or seismic data using statistical 
data analysis tools. For example: 

• Facies proportion map and curves can be derived from well data by 
computing facies proportions layer-wise or column-wise in the reservoir 
stratigraphic grid. These constraints can be integrated in MPS models by 
expanding the use of the servosystem introduced by Strebelle in SNESIM  
[8] to match target facies proportions per layer or per column instead of 
globally. 

• Variable azimuth maps can be estimated from seismic data by looking for 
local major directions of continuity. Local rotations of the training image 
can impose this constraint onto MPS models [10]. 

• Seismic data can be calibrated to well data to generate an exhaustive 3D 
facies probability cube, which can constrain the MPS simulation by using 
different data integration methods, for example the tau-model proposed 
by Journel [5].  

In sparse well environments, facies proportion curves, proportion maps or 
probability cubes directly computed from actual reservoir data commonly need to 
be edited to correct potential bias due to preferential well locations and data 
sampling, and account for geological interpretation based on reservoir analogs. It 
is important, however, to check that the modified proportion constraints are still 
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locally consistent with well data. Furthermore, as with training images, the 
uncertainty related to facies actual spatial distribution and continuity should be 
accounted for by generating alternative facies proportion and geometry 
constraints. For example, the impact of potential horizontal flow barriers can be 
evaluated by imposing high proportions of low permeability facies in particular 
grid layers through a vertical facies proportion curve constraint. 

Figure 2 displays the facies proportion curves and facies proportion maps 
computed from 6 wells for a fluvial-deltaic reservoir mimicking a Chevron 
modeling study.  
 

 
Figure 2 Example of facies proportion maps and curve computed from well data for a 
fluvial-deltaic reservoir. 

MPS Simulation 

The introduction of the search tree was the technical breakthrough that made 
SNESIM the first practical implementation of MPS simulation. Further progress 
was made a few years ago to improve MPS simulation time by optimizing the data 
template used to store the MPS moments in the search tree. The idea came from 
the following observation: the greater the number of conditioning data in the 
search neighborhood defined by the data template used to build the search tree, the 
faster the computation of the associated facies probability distribution from the 
search tree. Thus, the solution was to design the data template such that it mostly 
consists of data locations corresponding to previously simulated nodes, i.e. nodes 
belonging to grids coarser than the grid currently simulated. Also, intermediary 
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sub-grids were added to the traditional multiple-grid simulation approach to 
increase the relative proportion of previously simulated nodes in each nested grid. 

These SNESIM implementation enhancements not only allowed decreasing 
MPS simulation time, but also helped reduce memory demand to build search 
trees. Alternative implementations of MPS simulation were proposed to tackle 
memory demand issues by classifying training patterns into a limited number of 
representative clusters, e.g. SIMPAT [1] or FILTERSIM [12], but those solutions 
were found at the expense of increased simulation time, and data conditioning 
issues.  

Figure 3 displays a MPS model conditioned to 6 wells, using the training image 
of Figure 1, and the facies proportion constraints of Figure 2.  

 

 
Figure 3 Example of MPS model simulated for fluvial-deltaic reservoir 

Some fundamental questions remain however unanswered: What patterns or 
MPS moments do we want to extract and reproduce from the training image, and 
what training patterns are actually simulated in the MPS model? For example, in 
Figure 1, the training image displays fully connected channels while some 
simulated channels are disconnected in the corresponding MPS model shown in 
Figure 3. Provided that flow relevance studies confirm the importance of channel 
continuity, what MPS moments carry that information, and how can we ensure 
that those particular moments are properly reproduced in the MPS model? 
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Conclusions 

For the last ten years, experience has shown that MPS simulation allows the 
generation of much more realistic geological models than traditional variogram-
based techniques. MPS simulation captures connectivity and heterogeneity 
patterns that are essential for models to provide reasonable reservoir flow 
forecasting. In contrast to object-based techniques, MPS-based geological pattern 
reproduction is achieved without losing the critical ability of variogram-based 
methods to honor conditioning hard data exactly. 

Great progress has been made to answer practical questions such as the 
generation and selection of training images, and the management of non-stationary 
features. More fundamental question such as filtering MPS moments extracted 
from the training image, and controlling the reproduction of those moments in 
MPS models still need to be addressed. 
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