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Abstract Products from iron ore deposits are defined by iron grade, 

contaminants grades and grain sizes. Furthermore, the data sets constitute 

regionalized compositions, in which each part carries information that is relative 

to a total, provided both by the mass balances for each attribute among 

granulometric partitions, and in each granulometric partition among attributes of 

interest. In this context, transformation through the additive log-ratio transform 

(alr) makes it possible to use the classical approach of ordinary cokriging, and 

then back-transform them into the simplex - the sample space of compositional 

data where the constant sum constraint is maintained. However, implementing 

cokriging for multiple variables has the known disadvantage of modeling the 

corregionalization, where the difficulties in satisfying the positive definiteness 

conditions and the lack of adherence of the models, increases with the number of 

variables. An approach to override the difficulties related to modeling the LMC is 

to decompose the multiple correlated random functions through orthogonal factors 

with no spatial correlation. Thus, there is no need of modeling the 

corregionalization: each factor can be independently modeled and treated as an 

independent variable. The decomposition through Min/Max Autocorrelation 

Factors (MAF) has the advantage, when compared with the classical 

decomposition in principal components, of decorrelating variables for separation 

vectors different from zero. In this work, decomposition through MAF is 

implemented over the additive log-ratio transformations, in order to estimate 

multiple variables that constitute a regionalized composition, with results that 

satisfy the original considered balances and that provide adequate results 

(reproduction of global and local mean, no negative values within the data values 

interval). Results obtained combining both the compositional data approach and 

MAF decomposition, proved to better when compared to the ones obtained 

through cokriging of raw data. The MAF decomposition, in addition, eases the 

computational and operational efforts of modeling the corregionalization. 
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Introduction 

The process of geological research that assists the determination of grades and 

tonnages of a mineral deposit includes analyzing many variables, either because of 

their economic value to the assessment of a subsequent ore processing operation, 

or to understand the geological processes of formation. The joint consideration of 

correlated variables for grades estimation is much more consistent with 

phenomenon under study. 

Multivariate geostatistics allows the utilization of classical 

statistical/geostatistical techniques to estimate multiple corregionalized variables 

[1] that will assist in the ore body characterization or to estimate a single variable 

using the information from others as secondary information. Among the 

multivariate geostatistics methodologies, cokriging [2] is the most classic one 

providing an unbiased estimator which minimizes the error variance [3]. Its major 

drawback is that the spatial variability of correlated data must first be jointly 

modeled to be used in the regression models required.  

Many models of corregionalization have emerged to solve the problem of 

modeling joint spatial variability, being the Linear Model of Corregionalization 

(LMC) the most widespread, where all direct and cross variograms are linear 

combinations of the same basic structures. The Intrinsic Model of 

Corregionalization (IMC) is a particular case in which all variograms are 

proportional to a unique model [3]. 

Modeling of the corregionalization is the major drawback of cokriging. It 

makes the procedure discouraging to be used by the mining industry, which 

requires consistent results but fast retrieval [4, 5, 6, 7]. An approach to override 

these difficulties is to decompose the multiple correlated random functions 

through orthogonal factors with no spatial correlation. Decomposition through 

MAF (minimum/maximum autocorrelation factors) [8, 9, 10] decorrelates 

regionalized variables up to a small separation vector, allowing them to be 

estimated independently. 

In parallel with the problem stated above, there are data sets that constitute 

regionalized compositions, in which each part carries information that is relative 

to a total. Examples of this situation occur in bauxite, phosphates, manganese and 

iron ores, where the regionalized compositions are provided both by the mass 

balances for each attribute among granulometric partitions, and in each 

granulometric partition among attributes of interest. In these cases, the correlation 

might be spurious, given by the closed sum (mass balances) [11] leading to 

negative estimates due to the negative bias condition [12, 13]. In addition, there is 

also a concern regarding the reproduction of the closed sum by the estimates.  

In this context, transformation of simplicial coordinates into the real space 

through the additive log-ratio transform (alr) makes it possible to use the classical 

approach of ordinary cokriging, and then back-transform them into their sample 

space, the simplex [14]. Although isometric log-ratio transformation (ilr) is 

mathematically better than additive log-ratio (alr), because it preserves the metric 

of the simplex [13], the ease of use of the additive log-ratio (alr) makes it a better 

choice for everyday application in the industry. 
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Due to the mentioned difficulties when modeling the spatial corregionalization, 

this works proposes a methodological approach consisting in decorrelation of the 

additive log-ratios (alr) through MAF decomposition, estimating each factor 

independently and successively back transforming the estimated factors into the 

alr real space and then into the simplex to satisfy the closed sum. This approach is 

analogous to the non-regionalized case of principal components factorization of 

compositional data [15]. The results are compared both to the ones obtained 

through cokriging of the original variables and through cokriging of the additive 

log-ratios (alr).  

Methodology 

The methodologies used in the present work are ordinary cokriging, MAF 

decomposition and transformation in additive log-ratios (alr). Thorough revisions 

of these methodologies can be found in [16], [9] and [12], respectively.  

Case Study 

The case study comes from a BIF (banded iron formation) iron ore deposit, 

located in the Ferrous Quadrilateral, Brazil. The data set comes from various types 

of itabirites with economic importance, with iron grades ranging from 30 to 64% 

that constitute a geostatistical domain, arbitrarily called IB.  

There are three iron ore products given by the grain size partition: Lump Ore, 

Sinter Feed and Pellet Feed. Dimensioning of the processing plant makes it 

necessary to sub-divide the Sinter Feed fraction in two. One of these sub-fractions 

will be referred to as “21D” and is the one chosen for the case study.  

Analysis in each granulometric partition lead to the attributes of interest: grain 

size partition, iron, alumina, silica, phosphorous, manganese and loss on ignition, 

namely Wi, FEi, ALi, SIi, Pi, MNi and PPCi, respectively, where index i, in this 

case, corresponds to granulometric partition “21D”. 

Mass balance that leads to the constant sum is given by Equation (1).  
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Closure operation 

The original values in the data set do not add up to 100% as stated in Equation (1). 

For this reason, the closure operation is performed, following Equation (2).  
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where Z_clsd(u) is the new variable after the closure operation,  

Z(u) is the original value in the data set,  

and sum(21D) is the value that corresponds to the addition of the original 

values in fraction 21D. 

 

Table 1 presents the basic statistics of the original data after closure, including 

declustered mean and variance [17] obtained with a moving window [17] of 

dimensions 200 x 100 x 10m in directions X, Y and Z. 

 

Table 1: Basic statistics of the original (closed) data, including declustered mean and 

variance. 

 
Num. of 

Samples 
Min Max Mean Var 

Declustered 

Mean Var 

AL21D_clsd 909 0.10 3.11 0.79 0.23 0.79 0.24 

FE21D_clsd 909 21.53 68.78 60.96 39.19 60.84 43.03 

MN21D_clsd 909 0.01 9.90 0.30 0.59 0.30 0.49 

P21D_clsd 909 0.01 0.27 0.06 0.002 0.06 0.002 

PPC21D_clsd 909 0.04 9.76 2.54 3.20 2.54 3.39 

SI21D_clsd 909 0.64 68.39 8.89 78.15 8.92 89.11 

 

Scatter plots of original values versus new closed ones are presented in Figure 

1 to evaluate the influence of the closure operation. The value of the closed 

variables is identical to that of the original ones, except in the case of iron grade. 

Nevertheless, the correlation coefficient in this case is almost 1 (one). 

Additive log-ratio (alr) transformation 

The constant sum constraint is given by Equation (1). For obtaining the additive 

log-ratios (alr) Y(u), silica is arbitrarily chosen to be the divisor in the ratios 

presented in Equations (3) to (7). 
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Figure 1: Scatter plots

for variables alumina (a), iron (b), manganese (c), phosphorous (d), loss on ignition (e) and 
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Scatter plots of closed (_clsd) vs. original data with rho (correlation coefficient)

for variables alumina (a), iron (b), manganese (c), phosphorous (d), loss on ignition (e) and 

silica (f). 
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where ALR1
*
(u), ALR2

*
(u), ALR3

*
(u), ALR4

*
(u) and ALR5

*
(u), are the 

additive log-ratios (alr) estimates obtained through ordinary cokriging, 

and FE21_ckALR(u), P21_ckALR(u), MN21_ckALR(u), AL21_ckALR(u), 

PPC21_ckALR(u) and SI21_ckALR(u) are the estimates of the variables of interest 

after back transformation into the simplex. 

MAF decomposition 

MAF decomposition consists in transforming a multivariate random vector into a 

set of orthogonal factors, extending the principal components approach [18] up to 

a separation vector (h) greater than zero, generally coincident with the spacing 

among samples or the range of the first structure of the LMC [9]. 

MAF decomposition is performed choosing a separation vector h=150 meters. 

Decorrelation among variables is visually verified analyzing the cross-variograms 

of the factors, where it is observed an almost pure nugget effect for the separation 

vectors up to the selected distance and a decreasing autocorrelation from the first 

factor MAF1_ALR (maximum) to the fifth one MAF5_ALR (minimum). 

Spatial variability of each factor is analyzed and modeled independently with a 

nugget effect and two spherical structures (Figure 2), with the same anisotropy 

directions that in the alr transformation case: principal and intermediate axes 

along N90º and N0º in the XY plane, and the minor perpendicular to this plane. 



Afterwards, each factor is estimated individually

with the same neighborhood and search strategies that in the prior case of 

cokriging of the additive log

 

Figure 2 – Variograms of MAF factors, showing decreasing spatial correlation from MAF1 

(maximum) to MAF 5 (minimum).

 

Afterwards, the estimates are back transformed into additive log

and again into the simplex through Equations (

Afterwards, each factor is estimated individually through ordinary kriging

neighborhood and search strategies that in the prior case of 

cokriging of the additive log-ratios (alr).  
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Variograms of MAF factors, showing decreasing spatial correlation from MAF1 

(maximum) to MAF 5 (minimum). 

Afterwards, the estimates are back transformed into additive log-ratios (

the simplex through Equations (9) to (15), as before. The estimates 
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kriging [1], 
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Variograms of MAF factors, showing decreasing spatial correlation from MAF1 

ratios (alr), 

. The estimates 
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in this case are FE21_bckMAF(u), P21_bckMAF(u), MN21_bckMAF(u), 

AL21_bckMAF(u), PPC21_bckMAF(u) and SI21_bckMAF(u). 

Cokriging approach 

Cokriging of the original (closed) variables is performed with a Linear Model of 

Corregionalization (LMC) to model the joint spatial correlation. In this case, the 

ellipsoid of anisotropy is slightly rotated, with its principal and intermediate axes 

along directions N100º and N190º respectively in the XY plane, and the minor one 

is perpendicular to this plane.  

In this case, LMC is more difficult to model, as there are six variables involved. 

It is modeled, as in the previous cases, with a nugget effect, C0 and two spherical 

structures Sph, with contributions to global variance C1 and C2, as it is stated in 

Equation (16). 
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Ordinary cokriging is then performed using the same neighborhood and search 

strategies parameters than in the cases presented before. Estimates in this case 

have the same notation that the original closed data: FE21D_clsd(u), 

P21D_clsd(u), MN21D_clsd(u), AL21D_clsd(u), PPC21D_clsd(u) and 

SI21D_clsd(u). 

Discussion of results 

One of the aspects discussed next is the unbiasedness of the estimates, analyzed 

through the reproduction of the global and local mean. Reproduction of the global 

mean can be observed in Table 2. This table also shows that in the case of 

cokriging of the original (closed) data, there are estimates outside the original data 

interval, and some negative values as in the case of manganese.  

For checking the reproduction of the local mean, the conditional expectation of 

the estimates and original data are plotted along principal directions X, Y and Z 

using swath plots. In this paper, only iron, alumina and phosphorous grades along 

X direction are shown (Figure 3).  

From these diagrams it can be stated that the local mean of the data set is 

reproduced by the estimates. Moreover, when performing cokriging of the additive 

log-ratios (alr) and their MAF decomposition with independent kriging, results are 

very similar. For this reason, scatter-plots of the estimates obtained by the 

different methodologies are presented in Figure 4.  

Correlation coefficients (rho) exceed 0.90, indicating that the estimates are very 

similar, especially in the cases where the alr transformation is performed.  
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For the iron estimates, there is a slight tendency of the methods that involve 

additive log-ratio (alr) transformation, to provide higher values than direct 

cokriging of the original (closed) data, as is noticed in the swath and scatter plots. 

Although cross validation [17] was implemented for all the variables, variograms, 

search neighborhood and strategies and that Table 2 shows a good reproduction of 

the global mean, further modifications in the kriging/cokriging parameters should 

be implemented to obtain better results.  

 

Table 2 – Statistics of original (closed) data (_clsd in bold), estimates obtained through 

ordinary cokriging (_clsd), cokriging of additive log-ratios alr (_ckALR) and kriging of 

MAFs obtained from additive log-ratios alr (_bckMAF). (*) denotes values that are outside 

the original data interval. 

Count Minimum Maximum Mean 

AL21D_clsd 909 0.10 3.11 0.79 

AL21D_clsd 20813 0.14 2.19 0.88 

AL21_ckALR 20823 0.13 2.11 0.82 

AL21_bckMAF 20823 0.11 2.25 0.83 

FE21D_clsd 909 21.53 68.78 60.84 

FE21D_clsd 20813 37.39 68.85* 61.35 

FE21_ckALR 20823 26.58 68.01 62.50 

FE21_bckMAF 20823 26.67 67.91 62.53 

MN21D_clsd 909 0.01 9.90 0.30 

MN21D_clsd 20813 -0.09* 2.40 0.27 

MN21_ckALR 20823 0.01 3.25 0.14 

MN21_bckMAF 20823 0.01 4.35 0.14 

P21D_clsd 909 0.01 0.27 0.06 

P21D_clsd 20813 0.00* 0.22 0.06 

P21_ckALR 20823 0.01 0.15 0.06 

P21_bckMAF 20823 0.01 0.18 0.06 

PPC21D_clsd 909 0.04 9.76 2.54 

PPC21D_clsd 20813 0.03* 8.46 2.79 

PPC21_ckALR 20823 0.08 8.28 2.62 

PPC21_bckMAF 20823 0.09 7.71 2.63 

SI21D_clsd 909 0.64 68.39 8.92 

SI21D_clsd 20813 0.01* 45.62 7.89 

SI21_ckALR 20823 1.52 61.08 6.70 

SI21_bckMAF 20823 1.49 60.95 6.62 

 

Another aspect to be analyzed is the closed sums. 

The constant sums are perfectly satisfied for the totality of the estimates in the 

cases of cokriging of the additive log-ratios alr and also when kriging 

independently the MAF obtained from the additive log-ratios alr (Table 3), with 

estimates that are in the original sample space where the constant sum is 

maintained (the simplex).  
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(c) 

Figure 3 – Swath plots: conditional expectation of the estimates and original, plotted 

together along direction X, for iron (a), alumina (b) and phosphorous (c) grades.  
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(a) 
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(g) 

Figure 4 – Scatter plots of the estimates obtained through kriging of the MAF vs. cokriging 

of the original (closed) data, cokriging of

kriging of MAF vs. cokriging of 

phosphorous ((g), (h) and (i)) grades, respectively.

 

 

Table 3 – Statistics of the sum of the estimates in each block, obtained through cokriging of 

the original (closed) data (_clsd), 

kriging of the MAF obtained from the additive log

 Count

sum_clsd 20823

sum_ckALR 20823

sum_bckMAF 20823

 

The constant sums obtained through the estimates obtained by ordinary 

cokriging of the original data ordinary are adequate, but this situation cannot be 

extrapolated to another data set, because ordinary cokriging of the original

(closed) data does not gua

rho=0.942 

rho=0.945 

rho=0.943 

(b) (c) 

(e) (f) 

(h) (i) 

Scatter plots of the estimates obtained through kriging of the MAF vs. cokriging 

of the original (closed) data, cokriging of alr vs. cokriging of the original (closed data) and 

kriging of MAF vs. cokriging of alr, for iron ((a) (b) and (c)), alumina ((d), (e) and (f)) and 

phosphorous ((g), (h) and (i)) grades, respectively. 

Statistics of the sum of the estimates in each block, obtained through cokriging of 

the original (closed) data (_clsd), cokriging of the additive log-ratios alr (_ckALR

kriging of the MAF obtained from the additive log-ratios (_bckMAF). 

Count Minimum Maximum Mean Variance

20823 99.791 100.230 100.000 

20823 100.000 100.000 100.000 

20823 100.000 100.000 100.000 

The constant sums obtained through the estimates obtained by ordinary 

original data ordinary are adequate, but this situation cannot be 

to another data set, because ordinary cokriging of the original

(closed) data does not guarantee that the constant sum is satisfied.  

rho=0.947 rho=0.992 

rho=0.950 rho=0.966 

rho=0.933 rho=0.972 
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Scatter plots of the estimates obtained through kriging of the MAF vs. cokriging 

vs. cokriging of the original (closed data) and 

, for iron ((a) (b) and (c)), alumina ((d), (e) and (f)) and 

Statistics of the sum of the estimates in each block, obtained through cokriging of 

ckALR) and 

Variance 

0.001 

0.000 

0.000 

The constant sums obtained through the estimates obtained by ordinary 

original data ordinary are adequate, but this situation cannot be 

to another data set, because ordinary cokriging of the original 



12 

Conclusions 

Decomposition through MAF was implemented over additive log-ratio 

transformations alr with the objective of estimating multiple variables that 

constitute a regionalized composition. This is the case of variables from iron ore 

and other deposits such as manganese, bauxite and phosphates.  

Apart from providing unbiased estimates which reproduce the global and local 

mean, this combination of methodologies aims to solve two drawbacks when 

performing classical ordinary cokriging to improve the results by utilization of the 

joint spatial correlation: 

(i) reproduction of the original closed sums from the mass balances among 

chemical species and granulometric partitions, 

(ii) simplification of the computational and operational efforts of modeling the 

corregionalization through the Linear Model of Corregionalization (LMC) or 

alternatively, the Intrinsic Model of Corregionalization (IMC).  

Results obtained through cokriging of the additive log-ratios (alr) provided 

non-negative estimates, within the original data intervals, with an adequate 

reproduction of global and local mean, with the totality of the estimates adding up 

to the desired constant of 100%.  

When decomposing the additive log-ratios (alr) through MAF, the results were 

almost identical to the ones obtained through cokriging of the alr, through a much 

easier and simpler implementation.  

For the reasons mentioned above, it can be said that combination of both 

methodologies provided better results than cokriging of raw data – unbiased 

positive estimates, within the original data interval, adding up to 100% - without 

the effort of modeling the corregionalization. 
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