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Abstract The formulation of discrete Markov random fields (MRFs) include a com-
putationally intractable normalising constant, which limits the applicability of the
model class. The normalising constant can in principle be computed by marginalis-
ing out each variable in turn, but in practice this is computationally feasible for small
lattices only. We propose an approximate marginalisation operation, which can be
used to obtain an approximation of the normalisation constant and an approximate
probability distribution with an easy to compute normalising constant. In turn these
can be used to find an approximation of the maximum likelihood estimators, or can
be used in stead of the corresponding exact quantity in a fully Bayesian setting.
We also discuss how the approximate marginalisation operation can be modified to
give upper and lower bounds for the normalising constant. The same approxima-
tion strategy can be used to define an approximate maximisation operation, which
in turn can be used to find an approximation of, or lower and upper bounds for, the
maximum value of the MRF probability.

1 Introduction

In statistics in general and especially in spatial statistics we often find ourselves with
distributions known only up to an unknown normalising constant. Calculating the
constant typically involves high dimensional summation or integration. This is the
case for the class of discrete Markov random fields (MRF).
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A common situation is spatial statistics is that we have some unobserved latent
field x for which we have some associated observations y. We model x as an MRF
with unknown parameters θ . If we are Bayesians we adopt a prior for θ and study
the posterior distribution p(θ |y). A frequentist approach could involve finding a
maximum likelihood estimator for θ from observed data y or from a training image.
Independently or in combination of these investigations we might want to perform
simulations and generate samples from p(x|θ) for some values of θ . Without the
normalising constant however, all these become non-trivial tasks.

Several techniques have been proposed to overcome this problem. The normal-
ising constant can be estimated by Markov chain Monte Carlo (MCMC) to produce
maximum likelihood estimates (Geyer and Thompson, 1995; Gelman and Meng,
1998; Gu and Zhu, 2001). Møller et al. (2006) propose a possible strategy when
exact sampling of the latent field is feasible. In the present paper however, we focus
on deterministic methods, where by deterministic we mean that repeating the esti-
mation process yields the same estimate. In Reeves and Pettitt (2004) the authors
discuss the variable elimination algorithm for a class of models including discrete
MRFs. For MRFs defined on a lattice this allows for calculation of the normalisation
constant on lattices with up to around 20 rows for models with first order neighbour-
hoods. In Friel and Rue (2007) and Friel et al. (2009) the authors construct approxi-
mations for larger lattices by doing computations for a number of small sub-lattices
using the algorithm in Reeves and Pettitt (2004). The variable elimination algorithm
is also closely related to the junction tree algorithm (Cowell et al., 2007) and several
authors have proposed variants of this algorithm that generates approximations of,
or upper or lower bounds for, for the normalisation constant, see for example Jordan
et al. (1999) and Mateescu et al. (2010) and references therein.

In the present paper we consider binary MRFs and propose a new scheme for in-
cluding approximations into the variable elimination algorithm. From this we obtain
a computationally feasible approximation of, or upper or lower bound for, the nor-
malising constant. The energy function of a binary MRF is a polynomial of binary
variables, also called a pseudo-Boolean function. To develop our approximations
we use well-known approximate representations of pseudo-Boolean function, see
Hammer and Holzman (1992) and Grabisch et al. (2000). In the following sections
we discuss the most important aspects of our approximation strategy, and refer to
Austad and Tjelmeland (2011) or Austad (2011) for a more detailed derivation.

2 Binary MRFs and the variable elimination algorithm

Assume we have a vector of n binary variables, x = (x1, . . . ,xn)∈Ω = {0,1}n. Each
of the n variables we associate with a node in a graph. We number the nodes from
1 to n and let N = {1, . . . ,n} denote the set of all nodes. We let N = {N1, . . . ,Nn}
denote a neighbourhood system, where Ni ⊆ N \{i} denotes the set of neighbours
of node i. As usual we require a symmetrical neighbourhood system, so i ∈N j ⇔
j ∈Ni, and write i∼ j whenever i∈N j. For example we may have a 2D rectangular
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lattice where the nodes are numbered from 1 to n in the lexicographical order, where
Ni for an interior node i contains the four or eight nodes closest to it and nodes on
the lattice border have correspondingly fewer neighbours.

We use the following standard notations, xA = (xi, i ∈ A) and x−A = xN\A for
A ⊆ N, and x−i = xN\{i} for i ∈ N. A distribution for x, p(x), is said to be a binary
MRF with respect to the neighbourhood system N if p(x)> 0 for all x ∈Ω and the
full conditionals have the following Markov property,

p(xi|x−i) = p(xi|xNi) for all x ∈Ω . (1)

We say a set of nodes Λ ⊆ N is a clique if i ∈N j for all distinct pairs of i, j ∈ Λ ,
and Λ is a maximal clique if it is not a subset of another clique. We let C denote the
set of all cliques. The Hammersley-Clifford theorem (Besag, 1974; Clifford, 1990)
then states that a distribution p(x) is an MRF if and only if it can be expressed as

p(x) =
1
c

exp{U(x)} where U(x) = ∑
Λ∈C

VΛ (xΛ ), (2)

for some potential functions VC(xC),C ∈ C . Here c is a normalising constant and
U(x) is usually called the energy function associated to p(x).

2.1 Representation of the energy function

A real valued function of binary variables, for example the potential and energy
function associated to a binary MRF, is called a pseudo-Boolean function. Hammer
and Rudeanu (1968) showed that any pseudo-Boolean function can be expressed
uniquely as a binary polynomial, so we have

U(x) = ∑
Λ⊆N

β
Λ

∏
i∈Λ

xi, (3)

where βΛ are real coefficients which we refer to as interactions. For the energy
function U(x) it can be shown, see Tjelmeland and Austad (2012), that βΛ = 0
whenever Λ is not a clique, so most of the 2n interactions in (3) are equal to zero
and a reduced representation of U(x) is possible,

U(x) = ∑
Λ∈S

β
Λ

∏
i∈Λ

xi, (4)

where S is a set of subsets of N at least containing all Λ ⊆ N for which βΛ 6= 0. We
say that our representation is dense if for all Λ ∈ S also all subsets of Λ are included
in S. The minimal dense representation of U(x) is thereby (4) with

S = {λ ⊆ N : β
Λ 6= 0 for some Λ ⊇ λ}. (5)
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In the following we only consider dense representations of U(x).

2.2 The variable elimination algorithm

The variable elimination algorithm calculates the normalising constant c in (2) by
summing out from p(x) each variable x1, . . . ,xn in turn. As discussed in Reeves and
Pettitt (2004) and Friel and Rue (2007) we can perform this summation procedure
more efficiently by factorising the unnormalised distribution.

Assume we have a dense representation of U(x) as discussed above and assume
we want to sum out xi. Clearly we can then always split the set S into S{i} = {Λ ∈
S : i ∈Λ} and S−{i} = {Λ ∈ S : i 6∈Λ}. Correspondingly we can split the sum in (4)
in a sum of two sums,

U(x) = ∑
Λ∈S−{i}

β
Λ

∏
i∈Λ

xi + ∑
Λ∈S{i}

β
Λ

∏
i∈Λ

xi. (6)

Note that the first of these two sums is not a function of xi, so for p(x−i) = ∑xi p(x)
we get

p(x−i) =
1
c

exp

 ∑
Λ∈S−{i}

β
Λ

∏
i∈Λ

xi

 ∑
xi∈{0,1}

exp

 ∑
Λ∈S{i}

β
Λ

∏
i∈Λ

xi

 . (7)

The sum over xi can be expressed as a binary polynomial, i.e.

∑
xi∈{0,1}

exp

 ∑
Λ∈S{i}

β
Λ

∏
i∈Λ

xi

= exp

{
∑

Λ⊆Ni

β̌
Λ

∏
i∈Λ

xi

}
, (8)

where the interactions β̌Λ can be sequentially calculated as detailed in Tjelmeland
and Austad (2012). Thus, βΛ ,Λ ∈ S−{i} and β̌Λ ,Λ ⊆Ni together give a represen-
tation of the energy function U(x−i) associated to p(x−i) in a form corresponding
to (4). Note that p(x−i) is also a binary MRF, with a new neighbourhood system
and set of cliques. The above summation is thereby the first step in an sequential
procedure for calculating the normalising constant c. In each step we sum over one
of the remaining variables by splitting the energy function as above. Repeating the
procedure until we have summed out all variables naturally yields the normalising
constant.

The computational bottleneck for the above algorithm is when computing the
sum in (8). The number of new interactions that have to be calculated is two to the
power of the number of neighbours of the node to be summed out. For the procedure
to be computationally feasible for a binary MRF on a rectangular lattice with a first
order neighbourhood this in practice restricts the number of rows of the lattice to be
< 20. In the next section we define an approximation operation of pseudo-Boolean
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functions that can be used to define an approximate variable elimination algorithm
that is computationally feasible also for larger lattices.

3 The approximate variable elimination algorithm

Consider a pseudo-Boolean function, U(x),x = (x1, . . . ,xn) ∈ Ω say, with a dense
representation (4). Assume we are in the variable elimination algorithm and next
should sum out xi, but that the number of neighbours of node i is so high that this
summation operation is computationally infeasible. To cope with this problem we
propose before doing the summation to approximate U(x) with a pseudo-Boolean
function Ũ(x) where the number of neighbours of node i is reduced to a feasible
number. More precisely, we sequentially reduce the number of neighbours of node
i with one at a time until we have reached a predefined maximum number of neigh-
bours, ν . Assuming we define the approximate energy function by minimising the
error sum of squares, Austad and Tjelmeland (2011) show that an upper bound on
the approximation error by redefining two neighbour nodes i and j not to be neigh-
bours any more, is

1
4 ∑

Λ∈S{i, j}

∣∣∣βΛ

∣∣∣ , (9)

where S{i, j} = {Λ ∈ S : i, j ∈ S}. Thus, we first find the value of j that minimise
(9), redefine the neighbourhood system so that i and j no longer are neighbours, and
approximate Ũ(x) by minimising the error sum of squares. Denoting all resulting
approximated values by a tilde, we have S̃ = S\S{i, j}, for Λ ∈ S{i, j} and Austad and
Tjelmeland (2011) show that we get

β̃
Λ\{i, j} = β

Λ\{i, j}− 1
4

β
Λ , (10)

β̃
Λ\{i} = β

Λ\{i}+
1
2

β
Λ , (11)

β̃
Λ\{ j} = β

Λ\{ j}+
1
2

β
Λ . (12)

For sets Λ ∈ S̃ where the the interaction βΛ is not defined by (10), (11) or (12),
we have β̃Λ = βΛ , and clearly β̃Λ = 0 for all λ 6∈ S̃. The approximate variable
elimination algorithm is summarised in Figure 1.

On should note that as a side effect of the approximate variable elimination algo-
rithm we get an approximation p̃(x) of p(x) given as

p̃(x) = p(x1|x2, . . . ,xn)p̃(x2|x3, . . . ,xn) · · · p̃(xn−1|xn)p̃(xn), (13)

where p̃(xi|xi+1, . . . ,xn) is the conditional distribution corresponding to the approx-
imate distribution we have for xi, . . . ,xn after we have (approximately) summed out
x1, . . . ,xi−1.
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1. For i = 1, . . . ,n:

a. While |Ni|> ν

i. Find j = argmin j ∑Λ∈S{i, j} |β
Λ |.

ii. Approximate the energy function by
A. for all Λ ∈ S{i, j} set βΛ\{i, j} := βΛ\{i, j}− 1

4 βΛ , βΛ\{i} := βΛ\{i}+ 1
2 βΛ and

βΛ\{ j} := βΛ\{ j}+ 1
2 βΛ .

B. Set S := S\S{i, j}, i.e. set βΛ := 0 for all Λ not in the new set S.
b. Sum out variable xi as defined in Section 2.2.

2. Calculate the approximate normalising constant c̃ = exp{β /0}.

Fig. 1 The approximate variable elimination algorithm for finding an approximation, c̃, to the
normalising constant c.

4 Bounds for the MRF normalising constant

When approximating an energy function U(x) with Ũ(x) by minimising the error
sum of squares as discussed in Section 3 it is also possible to find the associated
error, i.e. for any state x analytical expressions for Ũ(x)−U(x) are available. In par-
ticular these analytical expressions can be used to define lower and upper bounds for
U(x) represented on the same dense set S as Ũ(x), for details again see Austad and
Tjelmeland (2011). Thereby a lower (or upper) bound on the normalising constant
can be found by replacing item 1.a.ii.A in Algorithm 1 by expressions for the lower
(or upper) bound for U(x). On should note that having a lower or upper bound for c
we immediately also have a corresponding lower or upper bound for the probability
distribution p(x).

5 Approximations and bounds for maximum of a binary MRF

The Viterbi algorithm, which finds maxx p(x), is similar to the variable elimination
algorithm except that in stead of summing out xi it takes the maximum over xi. Thus,
in stead of (7) one gets

max
x

p(x) =
1
c

max
x−i

exp

 ∑
Λ∈S−{i}

β
Λ

∏
i∈Λ

xi

max
xi

exp

 ∑
Λ∈S{i}

β
Λ

∏
i∈Λ

xi


 . (14)

The inner maximisation in this expression becomes computationally too expensive
if the number of neighbours of i is too high, so just like the variable elimination algo-
rithm the Viterbi algorithm is computationally feasible for MRFs defined on reason-
ably small lattices only. However, an approximate Viterbi algorithm can be defined
correspondingly to how we introduced an approximation to the variable elimina-
tion algorithm in Section 3. Alternatively lower or upper bounds for maxx p(x) can



Approximations and bounds for binary Markov random fields 7

be found by replacing the approximation U(x) with a corresponding lower or up-
per bound, corresponding to what we did for the variable elimination algorithm in
Section 4.

6 Examples

In this section we present approximation results and lower and upper bounds for
an Ising model. More examples can be found in Austad and Tjelmeland (2011),
including an example demonstrating how the approximation can be used to fit a
fully Bayesian model to a given data set.

Assume we have an Ising model on a 100×100 lattice with model parameter θ .
Thus we have n = 10 000 nodes and two nodes i and j are neighbours if and only if
they are located next to eachother in the horizontal or vertical direction. The energy
function, which is now of course also a function of θ , is given as

U(x) = θ ∑
i∼ j

I(xi = x j), (15)

where I(·) is the indicator function. In the approximate algorithms we sum or max-
imise out the variables in the lexicographical order.

To evaluate the performance of the approximation algorithms we first sample
a perfect sample from the Ising model using coupling from the past (Propp and
Wilson, 1996) for a given parameter value θtrue. Then, treating our realisation as data
and θ as an unknown parameter we approximate the posterior distribution for θ ,
p(θ |x) ∝ p(θ)p(x|θ), by replacing the likelihood p(x|θ) with the corresponding
approximation in (13) and using an improper uniform prior on (−∞,∞). Results for
θtrue = 0.4, 0.6 and 0.8 are shown in Figure 2. Figure 3 shows corresponding lower
and upper bounds for the log-likelihood function. As clearly maxθ p(x|θ) must at
least be as large as the maximum of the lower bound (indicated by horizontal dashed
lines in the figure), one can from lower and upper bounds for the likelihood function
easily identify an interval which must contain the maximum likelihood estimator.

7 Closing remarks

We have discussed approximations and bounds for binary MRFs. The approxima-
tions and bounds are valid for a MRF with any neighbourhood structure, and can
in particular be used for MRFs with a local neighbourhood system defined on a
rectangular lattice. The results can be generalised to a situation with more than two
possible values in each node, but this require the introduction of a more general
notation. Moreover, we expect the computational resources necessary to obtain rea-
sonably accurate approximation results to grow rapidly with the number of possible
values in each node.
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Fig. 2 The dashed curves are approximate posterior distributions for θ for ν = 2 up to 13, moving
from left to right for increasing value of ν . The dashed red curve is the results for an alternative
approximation defined in Tjelmeland and Austad (2012). The upper, middle and lower plots show
results for θtrue = 0.4, 0.6 and 0.8, respectively.

In Section 6 we show some approximation results for an Ising model on a 100×
100 lattice. Other demonstrations on how the approximations and bounds can be
used are given in Austad and Tjelmeland (2011) and in Toftaker and Tjelmeland
(2012).
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Fig. 3 The solid curves are approximate log-likelihood functions for ν = 6 (blue), ν = 10 (purple)
and ν = 13 (red). The corresponding dashed curves are corresponding lower and upper bounds.
The left, middle and right plots show results for θtrue = 0.4, 0.6 and 0.8, respectively.
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