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Abstract We define the class of multi-grid discrete Markov random field (MRF)
models and discuss how to estimate associated model parameters from a given train-
ing image. The intention is to use the resulting model as a prior for the spatial facies
distribution in a Bayesian model. The multi-grid MRF model includes normalisation
constants which it is computationally infeasible to compute. To cope with this com-
plication we use a partially order Markov model (POMM) approximation to each
MRF included in the multi-grid MRF model. We thereby get an explicit expres-
sion for the resulting estimated (approximate) multi-grid MRF model. This enables
direct unconditional simulation from the model. Moreover, used as a prior model
in a Bayesian context, we also have an explicit expression, up to an normalising
constant, of the corresponding posterior. The Metropolis–Hastings algorithm can
thereby be used to generate samples from the posterior. It is also possible to adopt
once more the POMM approximation to MRF idea and generate realisations from
a POMM approximation to the posterior distribution without resorting to iterative
algorithms.

1 Introduction

When modelling the spatial facies distribution in for example petroleum reservoirs
it has become common practice to fit a model to a training image which is believed
to represent the spatial phenomenon under study. Multi point statistics (MPS) (Stre-
belle, 2002; Journel and Zhang, 2006) are often used as a modelling strategy in this
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situation. The MPS models are constructed so that it is straight forward to fit the
model to a training image. Unconditional simulation from MPS models is also easy.
Many of the various MPS models that have been proposed are quite successful in
reproducing the characteristics of the training image in unconditional realisations
from the fitted model. As such, the MPS modelling strategy is successful. However,
there are two important problems related with MPS. First, the number of model pa-
rameters that has to be estimated from the training image is typically huge. This
clearly makes the model flexible and able to adapt to a wide variety of training
images, but it also imply a risk of over fitting. Second, the fitted model is algorith-
mically defined and comes with no closed form, easy to compute expression for the
probability of each possible realisation. This represents no problem as long as the
interest is only in the (unconditional) fitted model, but is a major complication if one
has also available data that one wants to condition on. In particular, it is not clear
how to simulate realisations from the conditional distribution corresponding to the
unconditional model and observed data. The standard MPS solution to this problem
is to modify somehow the algorithm used to simulate unconditionally, such that the
observed data are reproduced. The details of how to modify the algorithm depend
on the type of MPS model used and the type of data observed. For some types of
data this strategy is quite successful, at least as far as it is possible to see by visual
inspection of the generated facies fields.

Alternatives to the MPS modelling strategy includes Markov mesh and partially
ordered Markov models (POMM) (Abend et al., 1965; Cressie and Davidson, 1998)
and Markov random fields (MRF) (Besag, 1974, 1986; Geman and Geman, 1984;
Hurn et al., 2003). However, there are complications also related to these two mod-
elling strategies. Markov mesh models and POMMs are defined through a unilateral
path and as a result the realisations from such models typically have a strong di-
rectionally induced by this path. See however Stien and Kolbjørnsen (2011) for a
Markov mesh formulation which seems almost to have overcome this complication.
The main problem with the MRF modelling strategy is that it includes a compu-
tationally intractable normalising constant and this is a major complication in the
model fitting phase because this normalising constant is a function of the model
parameters that we want to estimate. Thereby, it becomes difficult to find for exam-
ple the maximum likelihood estimator. See however Geyer and Thompson (1995),
Descombes et al. (1995) and Tjelmeland and Besag (1998) for a possible procedure
based on Markov chain Monte Carlo (MCMC) simulation.

In the present paper we define a multi-grid MRF model. Thus our model consists
of a hierarchy of MRF models where the distribution on one level depends on val-
ues on previous levels. Clearly the computationally intractable normalising constant
complication of MRFs is inherited into our multi-grid MRF formulation. Our strat-
egy to cope with this problem is to approximate each MRF with a POMM by adopt-
ing the approximation procedure introduced in Austad and Tjelmeland (2011). This
approximation can be used both in the model fitting phase and for (approximate) un-
conditional and conditional simulation from the fitted model. As the POMM approx-
imation is a (reasonably good) approximation to an MRF the directionality problem
of typical POMMs discussed above does not become a severe problem in our case.
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Fig. 1 Illustration of the
splitting of S for a toy 7× 7
lattice into three sub-lattices
S1,S2 and S3. The white, gray
and black nodes are in S1, S2
and S3, respectively.

In the following sections we discuss the most important aspects of our multi-grid
MRF model and provide some simulation examples. A more detailed discussion
can be found in Toftaker and Tjelmeland (2012). Both in the present paper and in
Toftaker and Tjelmeland (2012) we limit the attention to the binary case, but the
modelling procedure can be generalised to a situation with more than two facies.

2 Multi-grid MRF

Assume we have an n×m rectangular lattice and let S = {(i, j), i = 1, . . . ,n, j =
1, . . . ,m} be the set of lattice nodes. To node (i, j) ∈ S we associate a binary
variable xi j ∈ {0,1}. In the following we use the notations x = (xi j,(i, j) ∈ S),
xA = (xi j,(i, j) ∈ A) and x−A = xS\A when A ⊆ S, and x−(i, j) = x−{(i, j)} when
(i, j) ∈ S.

In the multi-grid approach the nodes in S are split into a series of an odd number,
T say, of sub-lattices, which we denote by S1, . . . ,ST . Figure 1 illustrates this for a
small toy example where n = m = 7 and T = 3. The sub-lattice S1 is an n1×m1
rectangular lattice, where n1 < n and m1 < m. The sub-lattice S2 form an (n1−1)×
(m1−1) rectangular lattice, and the nodes in S2 are placed between the nodes in S1
as illustrated in Figure 1. Correspondingly, the nodes in S3 are placed between the
nodes in S1∪S2, and this process is continued until ST .

To define a distribution for x, pθ (x), we define a marginal distribution for xS1 , and
for each t = 2, . . . ,T a conditional distribution for xSt given xS1:t−1 , where S1:t−1 =
S1∪ . . .∪St−1. Thereby we get

pθ (x) = pθ1(xS1)
T

∏
t=2

pθt (xSt |xS1:t−1), (1)

where we have a separate parameter vector for each of the T distributions, so
θ = (θ1, . . . ,θT ). We let each of the T distributions on the right hand side of (1)
be MRFs. The pθ1(xS1) is defined by an energy function Uθ1(xS1) via the rela-
tion pθ1(xS1) ∝ exp{−Uθ1(xS1)} and, for each t = 2, . . . ,T , the MRF pθt (xSt |xS1:t−1)
is correspondingly defined by an energy function Uθt (xSt ,xS1:t−1) via the relation
pθt (xSt |xS1:t−1) ∝ exp{−Uθt (xst ,xS1:t−1)}, where the proportionality is as a function
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of xSt . Related to simulation examples, we discuss in Section 6 one possible choice
of neighbourhood structures and energy functions for these MRFs.

3 The POMM approximation

In the following we first give a very brief review of the strategy used in Austad and
Tjelmeland (2011) for approximating a given MRF with a POMM. Thereafter we
discuss how to adapt this procedure to the multi-grid MRF situation.

3.1 POMM approximations of an MRF

The starting point in Austad and Tjelmeland (2011) is that a binary MRF pθ (x) =
c(θ)exp{−Uθ (x)} is assumed given, where c(θ) is the normalising constant and
Uθ (x) is the energy function. In principle the normalising constant c(θ) can be com-
puted by summing pθ (x) over each component of x in turn and require the sum to
be equal to one. Moreover, as a result of this summation process the MRF pθ (x)
can be reformulated as a POMM. Except for MRFs defined on very small lattices,
however, the summation procedure require far too much computation time to be
computationally feasible in practice. Austad and Tjelmeland (2011) define a com-
putationally feasible approximate variant of the summation process by including an
approximation step before summing out a component whenever it would require too
much computation time to do the exact summation. Thereby an approximation c̃(θ)
of c(θ), and a POMM approximation p̃θ (x) of pθ (x) are obtained.

If the interest is in the conditional distribution pθ (xA|x−A) corresponding to
pθ (x), two variants of the summation procedure discussed above can be defined.
The first possibility is to set in actual values for x−A, if such are available. The
resulting pθ (xA|x−A) is then an MRF, just as the original pθ (x), and thereby the
exact or approximate summations procedures discussed above may be applied. The
second alternative is to consider pθ (xA|x−A) as a function of both xA and x−A. In
the summation procedure we may then sum out only the components of x that
are in A. In the exact, but computationally infeasible, variant of the algorithm
we then get a POMM formulation of pθ (xA|x−A) and the normalising constant
c(θ ,x−A) in pθ (xA|x−A) = c(θ ,x−A)exp{−Uθ (x)} as a function of x−A. In the ap-
proximate version of the algorithm we correspondingly get a POMM approximation
of pθ (xA|x−A) and an approximation of the normalising constant c(θ ,x−A), also as
a function of x−A.
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3.2 The POMM approximation of a multi-grid MRF

To obtain a POMM approximation of the multi-grid MRF pθ (x) defined in Section
2 we can make an approximation to each of the MRF components. For the first
component, pθ1(xS1), we get a POMM approximation p̃θ (xS1) by summing over all
components in xS1 .

When it comes to pθt (xSt |xS1:t−1) we can consider this as a conditional variant of
the unconditional MRF

fθt (xS1:t ) ∝ exp{−U(xSt ,xS1:t−1)} (2)

and adopt one of the approximation strategies discussed in Section 3.1. When doing
model fitting, actual values for xS1:t−1 are available from the training image. Thereby
the approximation procedure discussed in Section 3.1 where actual values are in-
serted for conditional values can be used. Another situation where actual values of
the conditional variables are available is when doing unconditional simulation from
the fitted model. Then one should start by sampling xS1 from p̃θ1(xS1). Thereby
these simulated values are available for xS1 when one should sample xS2 . Next the
simulated values for xS1:2 are available when one should sample from pθ3(xS3 |xS1:2),
and so on.

When the interest is in generating realisations from a fitted multi-grid MRF
model conditioned to observed data, it is no longer possible to simulate xS1 ,xS2 , . . . ,xST

sequentially as in the unconditional case, and thereby we need an approximation
of pθt (xSt |xS1:t−1) as a function of both xSt and xS1:t−1 . Starting with the MRF
(2) we should then apply the approximation strategy discussed in Section 3.1
where one sums over xA with A = St only. We thereby obtain both an approx-
imation c̃(θt ,xS1:t−1) of the normalising constant c(θt ,xS1:t−1) in pθt (xSt |xS1:t−1) =
c(θt ,xS1:t−1)exp{−U(xSt ,xS1:t−1)}, and a POMM approximation p̃θt (xS1 |xS1:t−1), both
as a function of xS1:t−1 . The approximation of the normalising constant can be used
to define the following approximation of pθ (x),

p̃θ (x) ∝ exp{−Uθ1(xS1)}
T

∏
t=2

[
c̃(θt ,xS1:t−1)exp{−Uθt (xSt ,xS1:t−1)

]
. (3)

This approximation is not a POMM, but except for the associated normalising con-
stant p̃θ (x) can easily be evaluated for any x and will be our starting point when
defining the algorithm for generating conditional realisations in Section 5. From
the POMM approximation p̃θt (xSt |xS1:t−1) of pθt (xSt |xS1:t−1) we also get a POMM
approximation of pθ (x),

p?θ (x) = p̃θ1(xS1)
T

∏
t=2

p̃θt (xSt |xS1:t−1). (4)
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4 Parameter estimation

Let now x denote the training image to which we want to fit the multi-grid MRF
defined in Section 2. We estimate the parameter vector θ by maximum likelihood.
Because we have a separate parameter vector θt for each MRF component in the
multi-grid MRF, the maximisation can be done with respect to each θt separately.
Thereby we have to maximise pθ1(xS1) = c(θ1)exp{−Uθ1(xS1)} with respect to θ1,
and for each t = 2, . . . ,T maximise

pθt (xSt |xS1:t−1) = c(θt ,xS1:t−1)exp{−Uθt (xSt ,xS1:t−1)} (5)

with respect to θt . One should remember that the normalising constants of these
MRFs are computationally intractable, so direct numerical maximisations are not
possible. It may be tempting to find an approximation to the maximum likelihood
estimator by optimising numerically the corresponding POMM approximations in
stead, but this may become problematic as the POMM approximations are not con-
tinuous functions of the parameters. Numerical optimisations may therefore quickly
become stuck in a local maxima originating from the approximation. In stead we
adopt the POMM approximations as proposal distributions in an importance sam-
pling setting. Thereby we obtain estimates of the computationally intractable nor-
malising constants that are smooth functions of the model parameters and these can
be used as basis for numerical optimisation. A more detailed discussion of our max-
imisation procedure can be found in Section 4.3 of Toftaker and Tjelmeland (2012).

5 Unconditional and conditional simulation

No direct methods are available for unconditional simulation from a fitted multi-grid
MRF. However, efficient simulation is possible from approximations to the multi-
grid MRF. As also discussed in Section 3.2, we can sample xS1 , . . . ,xST sequentially.
Thus, we first establish a POMM approximation p̃θ1(xS1) to pθ1(xS1) and generate
a corresponding sample xS1 from this POMM approximation. Next we insert the ac-
tual simulated values for xS1 into the expression for pθ2(xS2 |xS1), establish a POMM
approximation p̃θ2(xS2 |xS1) to pθ2(xS2 |xS1) and generate xS2 from this POMM ap-
proximation. We next insert the actual simulated values for xS1:2 into the expression
for pθ3(xS3 |xS1:2) and so on. If only one or a few unconditional realisations are re-
quired this is a feasible simulation procedure. One should note, however, that the
computationally most expensive part of the procedure is to establish a POMM ap-
proximations to a give MRF, and this has to be done T − 1 times for each new
realisation. So if a large number of unconditional realisations should be generated
it would be better to start out be establishing the POMM approximation (4) to the
whole multi-grid MRF. Having done this, a very large number of unconditional re-
alisations from (4) can be generated very efficiently.
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As discussed in Section 3.2, when conditioning to data it is not possible to sim-
ulate xS1 , . . . ,xST sequentially as in the unconditional case. Instead one should start
out with the approximation p̃θ (x) to pθ (x) defined in (3), and form the correspond-
ing conditional distribution p̃θ (x|z) ∝ p̃θ (x)ψ(z|x), where z is the observed data
and ψ(z|x) the associated likelihood. Next one can either simulate from p̃θ (x|z) by
a Metropolis–Hastings algorithm, or one may consider p̃θ (x|z) as just a new MRF
to which we can establish a POMM approximation. Having established the POMM
approximation to the conditional distribution we can efficiently generate a large
number of realisations from it.

6 Simulation examples

We evaluate the performance of our multi-grid MRF scheme by applying it to the
three 121×121 training images shown in the upper row of Figure 2. In each case we

Training images

Unconditional realisations from fitted models

Fig. 2 The three training images (upper row) and for each of the three training images three reali-
sations from the fitted multi-grid MRF.
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let S1 be a 16×16 lattice and use T = 7 sub-lattices. In the following we discuss the
most important parts of the definition of the energy functions for the various MRF
components in our multi-grid MRF model, for a more detailed definition see Tof-
taker and Tjelmeland (2012). In all the MRFs defining the multi-grid MRF we use a
second order neighbourhood system (Besag, 1974), so each interior node (i, j) ∈ St
has the eight nearest nodes in St as its neighbours. Nodes on the boundary of the
lattice have correspondinly fewer neighbours. This gives ten types of cliques and,
assuming the potential functions to be translation invariant, a corresponding num-
ber of model parameters. Without loss of generality the potential of one of these ten
cliques can be set to zero, so we end up with nine model parameters for each level
t = 1, . . . ,T . The largest cliques contain four nodes, so the model includes in addi-
tion to a first order effect and pairwise interactions between neighbour nodes, also
triple and quadruple interactions. For t ≥ 2, the components of xS1:t−1 are treated as
covariates in the MRF model for xSt . Here node (i, j)∈ St is linked to the four nodes
in S1:t−1 located closest to (i, j), and these four nodes are allowed to influence the
first order effect of node (i, j). We only include pairwise and triple interactions be-
tween (i, j) and the four closest nodes in Sq:t−1, which results in ten more parameters
for each t ≥ 2.

For each of the three training images in the upper row of Figure 2 we have fit-
ted the multi-grid MRF described above, and thereafter generated three independent
realisations from the fitted model as discussed in Section 5. The unconditional re-
alisations are shown in the three lower rows of Figure 2. We can see that much of
the characteristics of the training images are reproduced, but not all. For the training
image to the left, the realisations contains too many small black objects relative to
the training image. The same tendency can also be observed for the other two train-
ing images, but the effect is less clear here. For the training image to the right the
fitted model is not able to reproduce the very strong continuity of the channels in
the training image. In addition to the visual comparison of the training images with
realisations from the fitted model considered here, Toftaker and Tjelmeland (2012)
also do a comparison via a number of descriptive statistics.

As discussed in Section 5 we can also generate realisations from POMM approx-
imation to a conditional distribution given some data. In Figure 3 we have assumed
to have exact observations in two vertical wells, where the observed values are taken
from the corresponding training image. We can observe that the wells do not “stand
out” from the simulated values and that the characteristics of the conditional realisa-
tions is not much different from the corresponding unconditional realisations. Again
Toftaker and Tjelmeland (2012) contain also comparisons via descriptive statistics.

7 Closing remarks

We have defined a multi-grid MRF and discussed how to use the POMM approxima-
tion of MRF idea handle the multi-grid MRF model computationally. In particular
we have expressions for the probability distribution of the multi-grid MRF when
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Fig. 3 For the fitted multi-grid MRF to each of the three training images in the upper row of Figure
2, three realisations from the POMM approximation of the corresponding conditional distribution
given two vertical “wells”.

fitted to a training image, and this allows us to construct general algorithms for gen-
erating realisations from the corresponding conditional distribution when data are
observed. In simulation examples with three training images we have demonstrated
the flexibility, and limitations, of our approach.

In our discussion, and in the examples, we have limited the attention to 2D binary
models. Our modelling strategy can easily be extended to include more than two
facies, but the computational complexity of the approach grows rapidly with the
number of facies and neighbourhood size of the MRFs, so we expect the approach
to feasible only for a reasonably low number of facies. A direct generalisation of our
approach to a 3D situation is also possible, but for this to become computationally
feasible the estimation and simulation procedures must be carefully implemented.
A better alternative is perhaps to model the 3D case with a Markov chain of 2D
multi-grid MRFs.
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