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Abstract Distance-based method has been successfully dgpliarious kinds of
geological modeling problems such as history matghuncertainty qualification
and pattern-based geostatistical simulation as féectee means of model
parameterization or pattern classification. Indidt reservoir models or
geological patterns are parameterized as points space defined by a distance
function which measures similarity between a pdirnuwodels or geological
patterns. The reservoir models or geological pasteare positioned in this
similarity space in such a way that similar ones eustered and dissimilar ones
are separated. Because of such nature of the sgatistical clustering method or
search technique can be efficiently implementedis Tdaper proposes a new
application of the distance-based method to thea as& multi-phase flow
upscaling.

The proposed upscaling technique relies on dyngms&udo function method
utilizing local boundary condition. The major limfton of existing methods is that
different simulation gridblock obtains differentguglo function, resulting in the
requirement of generation and usage of too manuduseelative permeability
curves that exceed the capability of conventioraivfsimulation practices.
Several attempts to group pseudo functions haven beade since 1990s.
However, they have not yet attained enough effyjemnd robustness for
commercial applications. In the method proposedthis paper, we quickly
generate a subgrid-scale pattern of displacememtt ffor each simulation
gridblock based on fine scale geological descniptieast static method that uses
shortest-path algorithm enables such a rapid geaeraf displacement front
profile without running flow or streamline simulati. Then, by using distance-
based approach, simulation gridblocks are clustereciccordance with the
similarity of the shape of displacement front. silnulation gridblocks belonging
to the same cluster can share the same dynamid@genction because of the
strong correlation between displacement front profand pseudo relative
permeability curves.
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1 Introduction

Multi-phase flow upscaling utilizing dynamic pseudethods has been actively
investigated and applied to reservoir simulatiomdigts for decades. Numerous
variations of the methods have been proposed [lal®] reviewed [14-17].
However, the dynamic pseudo methods are oftercizeti mainly because of the
following reasons; first, 1) pseudo functions at@rgly dependent on boundary
conditions and second, 2) every different coarselbtpck and every flow
direction can have different set of pseudo fundifitb]. The former limitation is
particularly significant if global methods and theariants [1-2, 9-12, 13] are
employed for the dynamic pseudo generation. In thise, if well position and
flow rate are changed, pseudo functions must benergted. This problem can be
avoided if local methods [5-8] are utilized. Howeméis usually computationally
prohibitive to dynamically generate pseudo fundiousing local boundary
condition because it requires running two-phase fiimulation on every coarse
gridblock and every flow direction. Therefore, dsatly stated in [15], ‘we must
assign each coarse gridblock to one of the limiteshber of rock types in such a
way that all blocks within the same rock type hésienilar” pseudos.” However,
although several authors have proposed methodsufdr clustering of simulation
gridblocks [18-21], the methodology has not beetaldshed to the level of
commercial applications.

In this paper, we propose to apply distance-basedeiing [22-29] to group
coarse simulation gridblocks into clusters for gssig pseudo function. The
central idea of the distance-based modeling isaraipeterize geological models
or geological patterns in a metric space in sucWay that similar ones are
clustered and dissimilar ones are separated. Tindasty between any two
geological models/patterns is evaluated using tamtie® function. Based on the
similarity distances measured between all pairgemfiogical models/patterns, the
ensemble of models/patterns is accommodated iraeeswhere models/pattern
can be clustered or searched by utilizing the mfdion of similarity. Arpat and
Caers [22] introduced the concept and use of siityil@istances to multi-point
geostatistics (MPS) simulation utilizing geologigadttern. Suzuki and Caers
[23])/Suzuki et al. [24] introduced parameterizatafrgeological models based on
similarity distance to the solution of inverse desbs in order to invert geological
concept and structural geometry of reservoirs, eethgely, from historical
production data. Scheidt and Caers [25-26] develope methodology of
uncertainty quantification of reservoir performarmeintegrating distance-based
method with kernel clustering. This method is agmplied to more complex
geological settings by Alpak et al. [27]. Park aBGaers [28] extended the
distance-based modeling to the solution of spadtiakrse problems in high-
dimensional space. Honarkhah and Caers [29] applifed distance-based
modeling to facilitate multi-point geostatistics IP8) simulation with pattern [22].
In most cases, direct evaluation of similarity betw models in terms of
characteristic of interest (e.g. flow response&osputationally prohibitive. Hence
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a surrogate of similarity distance is typicallyliggéd. For example, if one desires
to cluster reservoir models based on the similarftffow response, a surrogate of
flow response, such as streamline simulation resatt be utilized [25-28] instead
of flow simulating all reservoir models in the engdgde. The key component of the
workflow design strategy is to ensure the strongedation between the similarity
of surrogate (e.g. streamline simulation result) #tve similarity of characteristics
of interest (e.g. flow response from full physidewf simulation) between
models/patterns.

The application of the distance-based method tdiphkse flow upscaling is
motivated by the resemblance of the problem setthghe dynamic pseudo
method to the workflow offered by the distance-bas®deling. In order to utilize
pseudo functions for multi-phase flow upscaling,e omust group simulation
gridblocks into clusters in such a way that alldgtocks within the same group
have “similar” displacement characteristics. Howegenerating dynamic pseudo
functions for all gridblocks is computationally pibitive. The solution to this
problem is to employ a surrogate of pseudo functiorsuch a way that the
similarity of the surrogate is strongly correlatedthe similarity of pseudo. By
implementing statistical clustering in a space mdi by the surrogate-based
similarity distance, one can group simulation giidks as desired. As a surrogate
for the distance calculation, we utilize subgriddscdisplacement front profile
which is controlled by fine scale geological destian within a coarse gridblock.
Such a displacement front profile can be rapidlgegated without running flow
simulation or streamline simulation by utilizingstest-path algorithm [30-31].
The distance function proposed in [22] for pattbased multi-point geostatistical
(MPS) simulation is employed as a distance measuevaluate the similarity of
the pattern of displacement front. The concepth aipproach has been tested
using a two-dimensional cross-sectional model in gevious publication [32]
and demonstrated promising results. However, it wB® observed that the
applicability of the method deteriorated with thecriease in mobility ratio of
reservoir fluids. In this paper, we enhance the hodtlogy by improving
boundary condition for generating pseudo and digpteent front profile, and
show that robustness of the proposed method isfisently improved. We also
extend the method to three-dimensional modeling present the application
result of the multi-phase flow upscaling of Uppezs sequence (fluvial channel
system) of SPE 10 model [33].

2 Method

Fig. 1 illustrates the principal concept of the thphase flow upscaling method
proposed in this paper. We assume that, if theepafor shape) of displacement
front in subgrid-scale is similar between two ceargidblocks, corresponding
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pseudo relative permeability curves are also simifathis assumption is valid, a
set of simulation gridblocks that exhibit similaisplacement front profiles in
subgrid-scale can share the same pseudo relativeepbility. Fig. 2a depicts
examples of the displacement front profiles gemeratsing a rapid static method
equipped with Dijkstra’s shortest-path algorithrd[35]. Here, we utilize similar
approach to the method of Hird and Dubrule [30] émploy time-of-flight (TOF)
[36] and the method of Frankel [31] to predict thsgment front profile for
individual corase simulation gridblocks. The timeflight (TOF), 1, on fine scale
grid (i, j, K) is caluculated based on the fine scale porositypermeability as;

(i), k) = [0 2 ds, 1)

whereg is porosity and u is Darcy velocity of displacipbase. By imposing
the same boundary condition as utilized for dynamseudo generation, the
shortest path that acheives the minimum time-ghfli(TOF) from the inlet is
rapidly found. The corresponding TOF value is atsgorded on fine scale
gridblocks. Then, the image depicted in Fig. 2admting the displacement front
at the time of breakthrough at coarse grid interfés obtained by thresholding the
TOF value. Fig. 2b shows the water saturation itigtion predicted by flow
simulation on the same fine scale geological dpSori as in Fig. 2a. As
compared in the figures, although the time-of-fligiOF) does not exactly
reproduce the simulated water saturation distridmytit still captures the pattern of
subgrid-scale displacement profile, which is sugfit enough for grouping
pseudo functions.

Fig. 3 illustrates the distance-based modeling Waonk that groups coarse
scale simulation gridblocks based on the similaoftydisplacement front profile.
First, a fine scale geological model is upgriddedoia coarse scale flow
simulation model. Each coarse scale gridblock évipled with displacement front
profile generated using the fast static algoritithe similarity of displacement
front patterns is evaluated by a distance functiwhjch is described later,
between the pairs of gridblocks. Using the evallatistance, a distance matrix
that describes the similarity between gridblockcastructed. The simulation
gridblocks are parameterized in a metric spacedasethis distance matrix in
such a way that similar ones are clustered andnulss ones are separated. The
clustering of the coarse gridblocks is implemeniedhis distance-based space
utilizing a statistical technique. In this papee wse CLARA (Clustering LARge
Applications) [37], which is one of the best knowrmedoid-based clustering
algorithms, for the distance-based clustering. CBARSst samples a subset of
gridblocks from the entire set of gridblocks, themnstructs distance matrix for
this subset. The clustering is performed in thibsst using PAM (Partitioning
Around Medoids) algorithm [37] by finding a setrokdoids (i.e., gridblocks that
are located in the center of clusters in the shitylaspace) which achieves “best
clustering” in terms of the total distance betwesdoids and non-medoid objects
within the clusters. This process is repeated sévgnes by changing the subset
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of gridblocks by random drawings. The best medtlidd achieve the best result
among the PAM results on the multiple sample setssalected as final medoids.
Once the final medoids are chosen, the remainingampled gridblocks are
associated with the nearest medoids based onrtlisiy distance. The detailed
description of CLARA and PAM algorithms is foundMyg and Han [38]. Instead
of using CLARA, the distance-based method porpdsetionarkhah and Caers
[29] for multi-point geostatistical (MPS) simulati@an be also utilized.

Once coarse gridblocks are grouped into clustem$; one pseudo relative
permeability is generated for each cluster. Thiscapng is implemented by flow
simulating multi-phase flow behavior on a “repres¢ime” coarse scale gridblock
located in the center of the cluster (= medoid).eMhthe generated
“representative” pseudo relative permeability cuiveassigned to all gridblocks
belonging to the same cluster.

To evalulate the similarity of pattern, we emplowahhattan distance [39] and
Euclidean distance transform (EDT) [40] which atdized by Arpat and Caers
[22] for pattern-based MPS simulation. Fig. 4 ithases the procedure by showing
an example:

1. Convert the time-of-flight (TOF) distribution (Figta) into a binary
image (Fig. 4b)

2. Using Chamfer transform [41], convert the binaryage of step 1 to
“distance map” through Euclidean distance transf¢EDT) [40].
After the transformation, each fine gridblock oftdince map receives
Euclidean distance to the nearest dark pixel of #ig (Fig. 4c)

3. Calculate Manhattan distance between a pair oflisiance maps as
below:

dip = ZN”ail - ai2||- (2

d; 2 Manhattan distance between pattern 1 and pattern

al: value at fine gridblock on the distance map from pattern 1
a: value at fine gridblock on the distance map from pattern 2
N: number of fine gridblocks on pattern

Calculated Manhattan distance serves as a meafsimilarity of the shape of
subgrid-scale displacement front between two cogrigtblocks. The lower value
of Manhattan distance corresponds to greater diityilaetween the patterns. Fig.
5 shows examples of similarity distance calculated pairs of subgrid-scale
displacement front profiles. The figure also depicthe comparison of
corresponding pseudo relative permeability curves.shown in the figure, the
similarity distance of the pattern of displacemieant profile is well correlated to
the similarity of corresponding pseudo functions.
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More detailed description about the method propadsetiis paper is provided
in our previous publication [32].

3 Improvement of Boundary Condition

The proposed method relies on dynamic pseudo giémenaethods using local
boundary condition (= local methods) since, unjiseudos from global methods,
the pseudo relative permeability from local methasisindependent on well
positions, flow rate and initial saturation etc.viver, as mentioned earlier, the
preliminary test of the proposed method, preseiriedur previous publication
[32], exhibited some weakness to the cases withvwaméble mobility ratio. This
section discusses how the improvement of boundamgition utilized in the local
method can enhance the robustness of the proposéltbdnto the cases with
unfavorable mobility ratio.

Fig. 6 compares conventional local boundary coodgi(Fig. 6a), utilized in
our previous publication [32], and new local bourydeondition (Fig. 6b) used in
this paper. In the figures, a coarse gridblock teth@s ‘upstream coarse grid
domain’ corresponds to the simulation gridblock vehdynamic pseudo function
is generated. As shown in Fig. 6a, the conventitow methods impose constant
saturation boundary condition of Sw = 1.0 at tHetiface of simulation gridblock
where the pseudo function is generated. In facth suboundary condition never
occurs in reservoir models unless an injector &cell at the inlet face of the
gridblock. The effect of this unrealistic saturaticondition tends to be
exaggerated with the increase in mobility ratio.avid this problem and obtain
more realistic profile of displacement front in guabl-scale, we use the local
boundary condition depicted in Fig. 6b. As shovrsimply attaches an upstream
simulation gridblock to the gridblock where pseudaction is generated, and
imposes constant saturation boundary conditionrmofS..0 at the inlet face of the
concatenated domain. Either constant pressurermtamat effective flux rate [13]
can be imposed on the same position.

An enhancement of the robustness of proposed mpldtse flow upscaling
method is demonstrated using a synthetic two-diinen$ cross-sectional model
shown in Fig. 7. The fine scale model (Fig. 7a)sists of 200 x 100 gridblocks
with grid size of 10 m x 100 m in horizontal andt2n vertical. This fine scale
model is coarsened to a coarse scale model (Fijy.c@mprising 20 x 10
gridblocks with grid size of 100 m x 100 m in hanal and 20 ft in vertical.
Water flooding performance is simulated placing onector and one producer as
in the figure, using constant water injection rated constant total liquid
production rate as well constraints. The dimensibthe model is 2 km x 100 m x
200 ft.

Fig. 8 shows the results of the numerical experinaana comparison of the
results from the conventional boundary conditioig(Ba) and those from the new
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boundary condition (Fig. 6b). Fig. 8a compares dimeulated water cut vs. time
for fine scale model, coarse scale model using mgke (= the same relative
permeability as used in the fine scale model), s®acale model using full pseudo
functions, and coarse scale model using the praposethod. The results
presented in Fig. 8a are obtained by using the exaional boundary condition
(Fig. 6a). The full pseudo function model is buily dynamically generating
pseudo relative permeability for every gridblocklavery direction and assigning
them as directional and irreversible relative peabiliy. Accordingly, total of
800 pseudo functions are utilized in the full pseudodel. The experiment is
conducted by considering different mobility ratiosM = 0.5, 2.0 and 5.0. As
shown, by using the conventional boundary condit{big. 6a), the proposed
method reproduces the simulation result from thiepkeudo model by using only
15 pseudo functions, instead of using 800 pseuitiothe case with favorable
mobility ratio (i.e. M = 0.5). However, the numberpseudo functions required to
reproduce the full pseudo simulation increases tighmobility ratio. In the case
of very unfavorable mobility ratio (i.e. M = 5.0}he proposed method still
requires 105 pseudos, indicating poor clusterindopmance of the proposed
method. Fig. 8b depicts the results of the samerxent obtained using the new
boundary condition (Fig. 6b). As shown in Fig. &ye to the more realistic
representation of subgrid-scale displacement fpoofile, the number of pseudo
functions required to reproduce the full pseudoutation is dramatically reduced
regardless of the mobility ratio of the fluids. Theposed method can reproduce
the full pseudo simulation by using only 10 psef@utwctions instead of 800 in the
case of M = 0.5 and by using only 25 pseudos i lsases of M = 2.0 and 5.0,
because of the enhanced clustering power of theadetogy.

4 Application Results

We demonstrate the numerical application of theppsed method using two
types of three-dimensional reservoir models. That 8xample utilizes a synthetic
reservoir case of five-spot water injection. Instieixample, we also build a full
pseudo model for validation purpose and compareéhbalt simulated using the
proposed method against the full pseudo simulatisult. The mobility ratio of
the fluids of this example is 2.0. The second aapion example is demonstrated
using the Upper Ness sequence of SPE 10 model T8@&.mobility ratio of the
SPE 10 model is 10.0. Since full pseudo generasiomwt practical for the SPE 10
model, the result from the proposed method is ceetpo fine scale simulation
result in the second example.
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Five-Spot Pattern Model

Fig. 9 depicts permeability distribution of fineade model (Fig. 9a) and coarse
scale model (Fig. 9b) utilized in the first numatiexample. Fine scale model
comprises 40x40x40 gridblocks. The size of gridklec30m in horizontal and 2
ft in vertical. The model is built as a pattern rnabfbr simulating five-spot water
injection by placing a quarter well producer anduarter well injector. The fine
scale model is upscaled to the coarse scale mo@i8x4 gridblocks by uniform
coarsening. Transmissibility is dynamically upsdalesing the pressure solver
method. More aggressive coarsening compared td peagtices is applied in this
example so that the construction of full pseudo ehasl still affordable. Water
flooding performance is simulated for 30 yearsmpdsing constant injection rate
of 8400 BBL/D and constant liquid production rate8600 BBL/D. Four different
well placements are tested as depicted in Fig.Mdbility ratio of the fluids is
2.0.

Fig. 11 compares simulated water cut vs. timeifeg §cale model, coarse scale
model using rock curve, coarse scale model usitigpkeudo functions, and
coarse scale model using the proposed method.igheefshows the results with
four different well positions (Cases 1~4) depiciadFig. 10. The full pseudo
model utilizes different pseudo relative permeapifor every different gridblock
and different flow directions, thus requires 1,5886eudo functions (= 8x8x4
gridblocks x 6 directions). The proposed methodstelts simulation gridblocks
into 15 clusters for assigning horizontal pseudtatinee permeability and 5
clusters for vertical pseudo relative permeabiligcordingly, total of 20 pseudo
functions are utilized in the coarse scale modéaigishe proposed method. As
illustrated in the figure, coarse scale simulatioging rock curve exhibits
significant delay of water breakthrough comparedite scale simulation. By
using pseudo functions, fine scale simulation te&ulbetter reproduced in all
cases. Relatively poor reproduction of fine scaleutation in Case 1 is
presumably because of the excessively aggressarsaming of gridblocks. In all
cases, the proposed method successfully reprodiedsil pseudo simulation by
using only 20 pseudo functions instead of usin@@ fseudos.

SPE 10 Model (Upper Ness Sequence)

The proposed method is applied to multi-phase flggcaling of Upper Ness
sequence of SPE 10 model [33]. Fig. 12 illustratmszontal permeability of fine

scale model (Fig. 12a) and coarse scale model @Z). The fine scale model
consists of 56x208x50 gridblocks. In this applicatiexample, the fine scale
gridblock size is horizontally enlarged from 20f10 ft x 2ft in [33] to 60 ft x 30

ft x 2 ft in order to reduce the computational lamwdf fine scale simulation. The
model is coarsened to 14x26x10 gridblocks througiform coarsening. The
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horizontal permeability is upscaled using powerragang method [42] withw of
0.8 and the vertical permeability is upscaled usnthmetic-harmonic method.
Fluid properties and relative permeability (= raxkve) are the same as described
in [33], thus the mobility ratio of the fluids i9D. Water injection performance is
simulated for 40 years by placing one producer ané injector, imposing
constant injection rate of 1010 BBL/D and constantid production rate of 1000
BBL/D. Six different well locations, Cases 1~6 &pitted in Fig. 13, are tested.
Fig. 14 compares simulated water cut vs. time fite 5cale model, coarse scale
model using rock curve and coarse scale model usiagproposed method for
Cases 1~6. The full pseudo model is unable to ik fioce it requires 21,840
pseudo functions. Hence the results from the coacsde model using the
proposed method are compared to the fine scalelaiom results. The proposed
method clusters coarse simulation gridblocks in® @oups for horizontal
pseudos and 5 groups for vertical pseudos, thusothé of 35 pseudo functions
are utilized. As shown in Fig. 14, the proposed hudtreproduces fine scale
simulation results by using only 35 pseudo fundionall cases, while the coarse
scale simulation using rock curve exhibits the gelawater production. Fig. 15
depicts cross-sectional views of simulated watarraion distribution at 10 years
after the start of production (Case 1), as a coisparamong fine scale simulation
(Fig. 15a), coarse scale simulation using rock euivg. 15b) and coarse scale
simulation using the proposed method (Fig. 15ck €toss-section shown in the
figure corresponds to the plane which cuts throtighpositions of producer and
injector. As illustrated, the proposed method betsptures the pattern of sweep
exhibited in the fine scale simulation than therseascale simulation using rock
curve.

5 Conclusions

New application of distance-based modeling method ntulti-phase flow
upscaling is presented. The proposed method ctustearse scale simulation
gridblocks into manageable number of groups in suctay that the gridblocks
belonging to the same group can share the same@g$enction. Such clustering
is achieved by capturing the subgrid-scale two-phHisw characteristics of
individual simulation gridblocks by predicting diapement front profile using
rapid static method, and then performing statitttastering in the space defined
by distance function which measures the similasftflow characteristics between
gridblocks. It is also shown that the improvemehboundary condition for the
local dynamic pseudo method significantly enhanclkestering power of the
proposed method. The method is applied to threexdsional synthetic pattern
model and Upper Ness sequence of SPE 10 modele&sfatreproduction of full
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pseudo simulation and/or fine scale simulation withmatically reduced number
of pseudo functions is demonstrated.
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Fig. 1 Conceptual illustration of proposed multiagh flow upscaling
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Fig. 3 Workflow of proposed multi-phase flow upsnglusing distance-based
method
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(b)

E s "™

Fig.4 Euclidian distance transform (EDT) of timeflight (TOF) profile, (a) time-
of-flight (TOF), (b) TOF converted into binary imag(c) distance map. Vertical
scale is exaggerated.
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Fig. 6 Conventional boundary condition (a) and teundary condition (b) of
local methods for dynamic pseudo generation.
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(a) Fine scale model (200 * 100) ’(.b)Coarse scale model (20 * 10)
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Fig. 7 Permeability distribution of fine scale mb@ and coarse scale model (b),
Two-dimensional cross-sectional model

(a) Conventional Boundary Condition (Fig. 6a)
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Fig. 8 Enhancement of proposed multi-phase flowcalrsg method due to the
improvement of boundary condition

(a) Fine Scale Model (40x40x40) (b) Coarse Scale Model (8x8x4)

Perm (mD)
1000
1i

Fig. 9 Permeability distribution of fine scale mb@ and coarse scale model (b),
three-dimensional 5-spot pattern model
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Fig. 10 Well placement, three-dimensional 5-spdtepa model, Cases 1~4
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Fig. 11 Comparison of simulated water cut, threeatisional 5-spot pattern
model, Cases 1~4
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(a) Fine Scale Model (b) Coarse Scale Model
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Fig. 12 Permeability distribution of fine scale neb¢a) and coarse scale model
(b), Upper Ness sequence, SPE 10 model
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Fig. 13 Well placement, Upper Ness sequence, SREdt@l, Cases 1~6
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Fig. 15 Comparison of simulated water saturatiatridiution at 10 years after the
start of production among fine scale simulation ¢aprse scale simulation using
rock curve (b) and coarse scale simulation usiog@sed method (c), cross-

sectional view, Upper Ness sequence, SPE 10 mOdsé 1



