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Abstract Distance-based method has been successfully applied to various kinds of 
geological modeling problems such as history matching, uncertainty qualification 
and pattern-based geostatistical simulation as an effective means of model 
parameterization or pattern classification. Individual reservoir models or 
geological patterns are parameterized as points in a space defined by a distance 
function which measures similarity between a pair of models or geological 
patterns. The reservoir models or geological patterns are positioned in this 
similarity space in such a way that similar ones are clustered and dissimilar ones 
are separated. Because of such nature of the space, statistical clustering method or 
search technique can be efficiently implemented. This paper proposes a new 
application of the distance-based method to the area of multi-phase flow 
upscaling. 
The proposed upscaling technique relies on dynamic pseudo function method 
utilizing local boundary condition. The major limitation of existing methods is that 
different simulation gridblock obtains different pseudo function, resulting in the 
requirement of generation and usage of too many pseudo relative permeability 
curves that exceed the capability of conventional flow simulation practices. 
Several attempts to group pseudo functions have been made since 1990s. 
However, they have not yet attained enough efficiency and robustness for 
commercial applications. In the method proposed in this paper, we quickly 
generate a subgrid-scale pattern of displacement front for each simulation 
gridblock based on fine scale geological description. Fast static method that uses 
shortest-path algorithm enables such a rapid generation of displacement front 
profile without running flow or streamline simulation. Then, by using distance-
based approach, simulation gridblocks are clustered in accordance with the 
similarity of the shape of displacement front. All simulation gridblocks belonging 
to the same cluster can share the same dynamic pseudo function because of the 
strong correlation between displacement front profile and pseudo relative 
permeability curves. 
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1 Introduction 

Multi-phase flow upscaling utilizing dynamic pseudo methods has been actively 
investigated and applied to reservoir simulation studies for decades. Numerous 
variations of the methods have been proposed [1-13] and reviewed [14-17]. 
However, the dynamic pseudo methods are often criticized mainly because of the 
following reasons; first, 1) pseudo functions are strongly dependent on boundary 
conditions and second, 2) every different coarse gridblock and every flow 
direction can have different set of pseudo functions [15]. The former limitation is 
particularly significant if global methods and their variants [1-2, 9-12, 13] are 
employed for the dynamic pseudo generation. In this case, if well position and 
flow rate are changed, pseudo functions must be regenerated. This problem can be 
avoided if local methods [5-8] are utilized. However, it is usually computationally 
prohibitive to dynamically generate pseudo functions using local boundary 
condition because it requires running two-phase flow simulation on every coarse 
gridblock and every flow direction. Therefore, as clearly stated in [15], ‘we must 
assign each coarse gridblock to one of the limited number of rock types in such a 
way that all blocks within the same rock type have “similar” pseudos.’ However, 
although several authors have proposed methods for such clustering of simulation 
gridblocks [18-21], the methodology has not been established to the level of 
commercial applications. 

In this paper, we propose to apply distance-based modeling [22-29] to group 
coarse simulation gridblocks into clusters for assigning pseudo function. The 
central idea of the distance-based modeling is to parameterize geological models 
or geological patterns in a metric space in such a way that similar ones are 
clustered and dissimilar ones are separated. The similarity between any two 
geological models/patterns is evaluated using a distance function. Based on the 
similarity distances measured between all pairs of geological models/patterns, the 
ensemble of models/patterns is accommodated in a space where models/pattern 
can be clustered or searched by utilizing the information of similarity. Arpat and 
Caers [22] introduced the concept and use of similarity distances to multi-point 
geostatistics (MPS) simulation utilizing geological pattern. Suzuki and Caers 
[23]/Suzuki et al. [24] introduced parameterization of geological models based on 
similarity distance to the solution of inverse problems in order to invert geological 
concept and structural geometry of reservoirs, respectively, from historical 
production data. Scheidt and Caers [25–26] developed a methodology of 
uncertainty quantification of reservoir performance by integrating distance-based 
method with kernel clustering. This method is also applied to more complex 
geological settings by Alpak et al. [27]. Park and Caers [28] extended the 
distance-based modeling to the solution of spatial inverse problems in high-
dimensional space. Honarkhah and Caers [29] applied the distance-based 
modeling to facilitate multi-point geostatistics (MPS) simulation with pattern [22]. 
In most cases, direct evaluation of similarity between models in terms of 
characteristic of interest (e.g. flow response) is computationally prohibitive. Hence 
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a surrogate of similarity distance is typically utilized. For example, if one desires 
to cluster reservoir models based on the similarity of flow response, a surrogate of 
flow response, such as streamline simulation result, can be utilized [25-28] instead 
of flow simulating all reservoir models in the ensemble. The key component of the 
workflow design strategy is to ensure the strong correlation between the similarity 
of surrogate (e.g. streamline simulation result) and the similarity of characteristics 
of interest (e.g. flow response from full physics flow simulation) between 
models/patterns.  

The application of the distance-based method to multi-phase flow upscaling is 
motivated by the resemblance of the problem setting of the dynamic pseudo 
method to the workflow offered by the distance-based modeling. In order to utilize 
pseudo functions for multi-phase flow upscaling, one must group simulation 
gridblocks into clusters in such a way that all gridblocks within the same group 
have “similar” displacement characteristics. However, generating dynamic pseudo 
functions for all gridblocks is computationally prohibitive. The solution to this 
problem is to employ a surrogate of pseudo function in such a way that the 
similarity of the surrogate is strongly correlated to the similarity of pseudo. By 
implementing statistical clustering in a space defined by the surrogate-based 
similarity distance, one can group simulation gridblocks as desired. As a surrogate 
for the distance calculation, we utilize subgrid-scale displacement front profile 
which is controlled by fine scale geological description within a coarse gridblock. 
Such a displacement front profile can be rapidly generated without running flow 
simulation or streamline simulation by utilizing shortest-path algorithm [30-31]. 
The distance function proposed in [22] for pattern-based multi-point geostatistical 
(MPS) simulation is employed as a distance measure to evaluate the similarity of 
the pattern of displacement front. The concept of this approach has been tested 
using a two-dimensional cross-sectional model in our previous publication [32] 
and demonstrated promising results. However, it was also observed that the 
applicability of the method deteriorated with the increase in mobility ratio of 
reservoir fluids. In this paper, we enhance the methodology by improving 
boundary condition for generating pseudo and displacement front profile, and 
show that robustness of the proposed method is significantly improved. We also 
extend the method to three-dimensional modeling and present the application 
result of the multi-phase flow upscaling of Upper Ness sequence (fluvial channel 
system) of SPE 10 model [33]. 

2 Method 

Fig. 1 illustrates the principal concept of the multi-phase flow upscaling method 
proposed in this paper. We assume that, if the pattern (or shape) of displacement 
front in subgrid-scale is similar between two coarse gridblocks, corresponding 
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pseudo relative permeability curves are also similar. If this assumption is valid, a 
set of simulation gridblocks that exhibit similar displacement front profiles in 
subgrid-scale can share the same pseudo relative permeability. Fig. 2a depicts 
examples of the displacement front profiles generated using a rapid static method 
equipped with Dijkstra’s shortest-path algorithm [34, 35]. Here, we utilize similar 
approach to the method of Hird and Dubrule [30] but employ time-of-flight (TOF) 
[36] and the method of Frankel [31] to predict displacement front profile for 
individual corase simulation gridblocks. The time-of-flight (TOF), τ, on fine scale 
grid (i, j, k) is caluculated based on the fine scale porosity and permeability as; 
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where φ is porosity and u is Darcy velocity of displacing phase. By imposing 

the same boundary condition as utilized for dynamic pseudo generation, the 
shortest path that acheives the minimum time-of-flight (TOF) from the inlet is 
rapidly found. The corresponding TOF value is also recorded on fine scale 
gridblocks. Then, the image depicted in Fig. 2a, predicting the displacement front 
at the time of breakthrough at coarse grid interface, is obtained by thresholding the 
TOF value. Fig. 2b shows the water saturation distribution predicted by flow 
simulation on the same fine scale geological description as in Fig. 2a. As 
compared in the figures, although the time-of-flight (TOF) does not exactly 
reproduce the simulated water saturation distribution, it still captures the pattern of 
subgrid-scale displacement profile, which is sufficient enough for grouping 
pseudo functions. 

Fig. 3 illustrates the distance-based modeling workflow that groups coarse 
scale simulation gridblocks based on the similarity of displacement front profile. 
First, a fine scale geological model is upgridded into a coarse scale flow 
simulation model. Each coarse scale gridblock is provided with displacement front 
profile generated using the fast static algorithm. The similarity of displacement 
front patterns is evaluated by a distance function, which is described later, 
between the pairs of gridblocks. Using the evaluated distance, a distance matrix 
that describes the similarity between gridblocks is constructed. The simulation 
gridblocks are parameterized in a metric space based on this distance matrix in 
such a way that similar ones are clustered and dissimilar ones are separated. The 
clustering of the coarse gridblocks is implemented in this distance-based space 
utilizing a statistical technique. In this paper, we use CLARA (Clustering LARge 
Applications) [37], which is one of the best known k-medoid-based clustering 
algorithms, for the distance-based clustering. CLARA first samples a subset of 
gridblocks from the entire set of gridblocks, then constructs distance matrix for 
this subset. The clustering is performed in this subset using PAM (Partitioning 
Around Medoids) algorithm [37] by finding a set of medoids (i.e., gridblocks that 
are located in the center of clusters in the similarity space) which achieves “best 
clustering” in terms of the total distance between medoids and non-medoid objects 
within the clusters. This process is repeated several times by changing the subset 
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of gridblocks by random drawings. The best medoids that achieve the best result 
among the PAM results on the multiple sample sets are selected as final medoids. 
Once the final medoids are chosen, the remaining unsampled gridblocks are 
associated with the nearest medoids based on the similarity distance. The detailed 
description of CLARA and PAM algorithms is found in Ng and Han [38]. Instead 
of using CLARA, the distance-based method porposed by Honarkhah and Caers 
[29] for multi-point geostatistical (MPS) simulation can be also utilized. 

Once coarse gridblocks are grouped into clusters, only one pseudo relative 
permeability is generated for each cluster. This upscaling is implemented by flow 
simulating multi-phase flow behavior on a “representative” coarse scale gridblock 
located in the center of the cluster (= medoid). Then the generated 
“representative” pseudo relative permeability curve is assigned to all gridblocks 
belonging to the same cluster. 

To evalulate the similarity of pattern, we employ Manhattan distance [39] and 
Euclidean distance transform (EDT) [40] which are utilized by Arpat and Caers 
[22] for pattern-based MPS simulation. Fig. 4 illustrates the procedure by showing 
an example: 

 
1. Convert the time-of-flight (TOF) distribution (Fig. 4a) into a binary 

image (Fig. 4b) 
2. Using Chamfer transform [41], convert the binary image of step 1 to 

“distance map” through Euclidean distance transform (EDT) [40]. 
After the transformation, each fine gridblock of distance map receives 
Euclidean distance to the nearest dark pixel of Fig. 4b. (Fig. 4c) 

3. Calculate Manhattan distance between a pair of the distance maps as 
below: 
 
��,� = ∑ ‖��

� − ��
�‖� .      (2) 

 
d1,2: Manhattan distance between pattern 1 and pattern 2 
a1

i: value at fine gridblock i on the distance map from pattern 1 
a2

i: value at fine gridblock i on the distance map from pattern 2 
N: number of fine gridblocks on pattern 

  
Calculated Manhattan distance serves as a measure of similarity of the shape of 

subgrid-scale displacement front between two coarse gridblocks. The lower value 
of Manhattan distance corresponds to greater similarity between the patterns. Fig. 
5 shows examples of similarity distance calculated for pairs of subgrid-scale 
displacement front profiles. The figure also depicts the comparison of 
corresponding pseudo relative permeability curves. As shown in the figure, the 
similarity distance of the pattern of displacement front profile is well correlated to 
the similarity of corresponding pseudo functions. 
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More detailed description about the method proposed in this paper is provided 

in our previous publication [32]. 

3 Improvement of Boundary Condition 

The proposed method relies on dynamic pseudo generation methods using local 
boundary condition (= local methods) since, unlike pseudos from global methods, 
the pseudo relative permeability from local methods is independent on well 
positions, flow rate and initial saturation etc. However, as mentioned earlier, the 
preliminary test of the proposed method, presented in our previous publication 
[32], exhibited some weakness to the cases with unfavorable mobility ratio. This 
section discusses how the improvement of boundary condition utilized in the local 
method can enhance the robustness of the proposed method to the cases with 
unfavorable mobility ratio. 

Fig. 6 compares conventional local boundary conditions (Fig. 6a), utilized in 
our previous publication [32], and new local boundary condition (Fig. 6b) used in 
this paper. In the figures, a coarse gridblock denoted as ‘upstream coarse grid 
domain’ corresponds to the simulation gridblock where dynamic pseudo function 
is generated. As shown in Fig. 6a, the conventional local methods impose constant 
saturation boundary condition of Sw = 1.0 at the inlet face of simulation gridblock 
where the pseudo function is generated. In fact, such a boundary condition never 
occurs in reservoir models unless an injector is placed at the inlet face of the 
gridblock. The effect of this unrealistic saturation condition tends to be 
exaggerated with the increase in mobility ratio. To avoid this problem and obtain 
more realistic profile of displacement front in subgrid-scale, we use the local 
boundary condition depicted in Fig. 6b. As shown, it simply attaches an upstream 
simulation gridblock to the gridblock where pseudo function is generated, and 
imposes constant saturation boundary condition of Sw = 1.0 at the inlet face of the 
concatenated domain. Either constant pressure or constant effective flux rate [13] 
can be imposed on the same position. 

An enhancement of the robustness of proposed multi-phase flow upscaling 
method is demonstrated using a synthetic two-dimensional cross-sectional model 
shown in Fig. 7. The fine scale model (Fig. 7a) consists of 200 x 100 gridblocks 
with grid size of 10 m x 100 m in horizontal and 2 ft in vertical. This fine scale 
model is coarsened to a coarse scale model (Fig. 7b) comprising 20 x 10 
gridblocks with grid size of 100 m x 100 m in horizontal and 20 ft in vertical. 
Water flooding performance is simulated placing one injector and one producer as 
in the figure, using constant water injection rate and constant total liquid 
production rate as well constraints. The dimension of the model is 2 km x 100 m x 
200 ft. 

Fig. 8 shows the results of the numerical experiment as a comparison of the 
results from the conventional boundary condition (Fig. 6a) and those from the new 
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boundary condition (Fig. 6b). Fig. 8a compares the simulated water cut vs. time 
for fine scale model, coarse scale model using rock curve (= the same relative 
permeability as used in the fine scale model), coarse scale model using full pseudo 
functions, and coarse scale model using the proposed method. The results 
presented in Fig. 8a are obtained by using the conventional boundary condition 
(Fig. 6a). The full pseudo function model is built by dynamically generating 
pseudo relative permeability for every gridblock and every direction and assigning 
them as directional and irreversible relative permeability. Accordingly, total of 
800 pseudo functions are utilized in the full pseudo model. The experiment is 
conducted by considering different mobility ratios of M = 0.5, 2.0 and 5.0. As 
shown, by using the conventional boundary condition (Fig. 6a), the proposed 
method reproduces the simulation result from the full pseudo model by using only 
15 pseudo functions, instead of using 800 pseudos, in the case with favorable 
mobility ratio (i.e. M = 0.5). However, the number of pseudo functions required to 
reproduce the full pseudo simulation increases with the mobility ratio. In the case 
of very unfavorable mobility ratio (i.e. M = 5.0), the proposed method still 
requires 105 pseudos, indicating poor clustering performance of the proposed 
method. Fig. 8b depicts the results of the same experiment obtained using the new 
boundary condition (Fig. 6b). As shown in Fig. 8b, due to the more realistic 
representation of subgrid-scale displacement front profile, the number of pseudo 
functions required to reproduce the full pseudo simulation is dramatically reduced 
regardless of the mobility ratio of the fluids. The proposed method can reproduce 
the full pseudo simulation by using only 10 pseudo functions instead of 800 in the 
case of M = 0.5 and by using only 25 pseudos in both cases of M = 2.0 and 5.0, 
because of the enhanced clustering power of the methodology.   

4 Application Results 

We demonstrate the numerical application of the proposed method using two 
types of three-dimensional reservoir models. The first example utilizes a synthetic 
reservoir case of five-spot water injection. In this example, we also build a full 
pseudo model for validation purpose and compare the result simulated using the 
proposed method against the full pseudo simulation result. The mobility ratio of 
the fluids of this example is 2.0. The second application example is demonstrated 
using the Upper Ness sequence of SPE 10 model [33]. The mobility ratio of the 
SPE 10 model is 10.0. Since full pseudo generation is not practical for the SPE 10 
model, the result from the proposed method is compared to fine scale simulation 
result in the second example. 
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Five-Spot Pattern Model 

Fig. 9 depicts permeability distribution of fine scale model (Fig. 9a) and coarse 
scale model (Fig. 9b) utilized in the first numerical example. Fine scale model 
comprises 40x40x40 gridblocks. The size of gridblock is 30m in horizontal and 2 
ft in vertical. The model is built as a pattern model for simulating five-spot water 
injection by placing a quarter well producer and a quarter well injector. The fine 
scale model is upscaled to the coarse scale model of 8x8x4 gridblocks by uniform 
coarsening. Transmissibility is dynamically upscaled using the pressure solver 
method. More aggressive coarsening compared to usual practices is applied in this 
example so that the construction of full pseudo model is still affordable. Water 
flooding performance is simulated for 30 years by imposing constant injection rate 
of 8400 BBL/D and constant liquid production rate of 8000 BBL/D. Four different 
well placements are tested as depicted in Fig. 10. Mobility ratio of the fluids is 
2.0. 

Fig. 11 compares simulated water cut vs. time for fine scale model, coarse scale 
model using rock curve, coarse scale model using full pseudo functions, and 
coarse scale model using the proposed method. The figure shows the results with 
four different well positions (Cases 1~4) depicted in Fig. 10. The full pseudo 
model utilizes different pseudo relative permeability for every different gridblock 
and different flow directions, thus requires 1,536 pseudo functions (= 8x8x4 
gridblocks x 6 directions). The proposed method clusters simulation gridblocks 
into 15 clusters for assigning horizontal pseudo relative permeability and 5 
clusters for vertical pseudo relative permeability. Accordingly, total of 20 pseudo 
functions are utilized in the coarse scale model using the proposed method. As 
illustrated in the figure, coarse scale simulation using rock curve exhibits 
significant delay of water breakthrough compared to fine scale simulation. By 
using pseudo functions, fine scale simulation result is better reproduced in all 
cases. Relatively poor reproduction of fine scale simulation in Case 1 is 
presumably because of the excessively aggressive coarsening of gridblocks. In all 
cases, the proposed method successfully reproduces the full pseudo simulation by 
using only 20 pseudo functions instead of using 1,536 pseudos. 

SPE 10 Model (Upper Ness Sequence) 

The proposed method is applied to multi-phase flow upscaling of Upper Ness 
sequence of SPE 10 model [33]. Fig. 12 illustrates horizontal permeability of fine 
scale model (Fig. 12a) and coarse scale model (Fig. 12b). The fine scale model 
consists of 56x208x50 gridblocks. In this application example, the fine scale 
gridblock size is horizontally enlarged from 20 ft x 10 ft x 2ft in [33] to 60 ft x 30 
ft x 2 ft in order to reduce the computational burden of fine scale simulation. The 
model is coarsened to 14x26x10 gridblocks through uniform coarsening. The 
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horizontal permeability is upscaled using power averaging method [42] with ω of 
0.8 and the vertical permeability is upscaled using arithmetic-harmonic method. 
Fluid properties and relative permeability (= rock curve) are the same as described 
in [33], thus the mobility ratio of the fluids is 10.0. Water injection performance is 
simulated for 40 years by placing one producer and one injector, imposing 
constant injection rate of 1010 BBL/D and constant liquid production rate of 1000 
BBL/D. Six different well locations, Cases 1~6 as depicted in Fig. 13, are tested. 
Fig. 14 compares simulated water cut vs. time for fine scale model, coarse scale 
model using rock curve and coarse scale model using the proposed method for 
Cases 1~6. The full pseudo model is unable to be built since it requires 21,840 
pseudo functions. Hence the results from the coarse scale model using the 
proposed method are compared to the fine scale simulation results. The proposed 
method clusters coarse simulation gridblocks into 30 groups for horizontal 
pseudos and 5 groups for vertical pseudos, thus the total of 35 pseudo functions 
are utilized. As shown in Fig. 14, the proposed method reproduces fine scale 
simulation results by using only 35 pseudo functions in all cases, while the coarse 
scale simulation using rock curve exhibits the delay of water production. Fig. 15 
depicts cross-sectional views of simulated water saturation distribution at 10 years 
after the start of production (Case 1), as a comparison among fine scale simulation 
(Fig. 15a), coarse scale simulation using rock curve (Fig. 15b) and coarse scale 
simulation using the proposed method (Fig. 15c). The cross-section shown in the 
figure corresponds to the plane which cuts through the positions of producer and 
injector. As illustrated, the proposed method better captures the pattern of sweep 
exhibited in the fine scale simulation than the coarse scale simulation using rock 
curve. 

5 Conclusions 

New application of distance-based modeling method to multi-phase flow 
upscaling is presented. The proposed method clusters coarse scale simulation 
gridblocks into manageable number of groups in such a way that the gridblocks 
belonging to the same group can share the same pseudo function. Such clustering 
is achieved by capturing the subgrid-scale two-phase flow characteristics of 
individual simulation gridblocks by predicting displacement front profile using 
rapid static method, and then performing statistical clustering in the space defined 
by distance function which measures the similarity of flow characteristics between 
gridblocks. It is also shown that the improvement of boundary condition for the 
local dynamic pseudo method significantly enhances clustering power of the 
proposed method. The method is applied to three-dimensional synthetic pattern 
model and Upper Ness sequence of SPE 10 model. Successful reproduction of full 
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pseudo simulation and/or fine scale simulation with dramatically reduced number 
of pseudo functions is demonstrated. 
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Fig. 1 Conceptual illustration of proposed multi-phase flow upscaling 
 

 
 
Fig. 2 Comparison between (a) displacement front profile predicted by fast static 

algorithm and (b) water saturation distribution from flow simulation 
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Fig. 3 Workflow of proposed multi-phase flow upscaling using distance-based 
method 
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Fig.4 Euclidian distance transform (EDT) of time-of-flight (TOF) profile, (a) time-
of-flight (TOF), (b) TOF converted into binary image, (c) distance map. Vertical 

scale is exaggerated. 
 

 
Fig. 5 Correlation between similarity distance of displacement front profile and 

similarity of corresponding pseudo relative permeability 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Conventional boundary condition (a) and new boundary condition (b) of 
local methods for dynamic pseudo generation. 
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Fig. 7 Permeability distribution of fine scale model (a) and coarse scale model (b), 

Two-dimensional cross-sectional model 
 

 
Fig. 8 Enhancement of proposed multi-phase flow upscaling method due to the 

improvement of boundary condition 
 

 
 

Fig. 9 Permeability distribution of fine scale model (a) and coarse scale model (b), 
three-dimensional 5-spot pattern model 
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Fig. 10 Well placement, three-dimensional 5-spot pattern model, Cases 1~4 
 
 
 
 

 
 

Fig. 11 Comparison of simulated water cut, three-dimensional 5-spot pattern 
model, Cases 1~4 
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Fig. 12 Permeability distribution of fine scale model (a) and coarse scale model 
(b), Upper Ness sequence, SPE 10 model 

 
 
 
 

 
 

Fig. 13 Well placement, Upper Ness sequence, SPE 10 model, Cases 1~6 
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Fig. 14 Comparison of simulated water cut, Upper Ness sequence, SPE 10 model, 
Cases 1~6 
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Fig. 15 Comparison of simulated water saturation distribution at 10 years after the 
start of production among fine scale simulation (a), coarse scale simulation using 

rock curve (b) and coarse scale simulation using proposed method (c), cross-
sectional view, Upper Ness sequence, SPE 10 model, Case 1 


