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Abstract Basin and Petroleum System Modeling spans a large spatial and temporal 

interval. Many of the input parameters are highly uncertain. Although probabilistic 

approaches based on Monte Carlo simulations have been used to address this 

uncertainty, the impact of spatial uncertainty on basin modeling remains unexplored. 

Lithologic facies is one of the key modeling inputs because rock properties such as 

porosity and thermal conductivity are wrapped into facies definition. Many techniques 

had been developed for facies modeling in reservoir characterization. These methods 

can be applied directly to basin modeling. In particular, multi-point geostatistical 

method has proved effective in facies modeling given sound training images. Another 

important spatial parameter is the geologic structure. Present day geologic structure is 

the initial point for reconstructing a sedimentary basin’s depositional history. In this 

work we first show the uncertainty analysis in basin modeling in a traditional manner. 

Then the impact of geologic facies distribution and structural uncertainty from seismic 

time-to-depth conversion are studied. It is concluded that facies distribution has 

significant impact on the volume of oil accumulated.  Further, different geological 

interpretations yield different results. Structural uncertainty from time-to-depth 

conversion has less impact in this case because the target area is fairly homogeneous. 
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1. Introduction 

Basin and Petroleum System Modeling (BPSM) is a key technology in hydrocarbon 

exploration that reconstructs deposition and erosion history and forward simulates 

thermal history and the associated generation, migration and accumulation of 

petroleum [8].  

BPSM involves solving coupled nonlinear partial differential equations with 

moving boundaries. The equations govern deformation and fluid flow in porous 

media, coupled with chemical reactions and energy transportation. The coupled system 

has to be solved numerically on discretized time and spatial grids with the integration 

of geological, geophysical, and geochemical input. PetroMod uses the finite element 

method to solve these equations. The workflow and key input parameters are 

summarized in Figure 1 [8]. 

 

 

Figure 1: Basin and Petroleum System Modeling Workflow [8] 
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The modeling process can cover large spatial and temporal intervals. Many of the 

input parameters are highly uncertain and yield very different simulation results. Thus, 

understanding the impact of input parameters is critical for exploratory decision-

making.  

The interest in uncertainty analysis in BPSM increases as computer power makes it 

possible to assess multiple models in a reasonable time. While much work has been 

done on uncertainty analysis (e.g. [4, 12 and 13]), the focus is mainly on traditional 

Monte Carlo techniques, which randomly draw values from statistical distributions of 

the input parameter and compare the difference in the result for each drawn input 

parameter. This gives an estimate of parameter uncertainty but important spatial 

correlations are not taken into account. The outputs from these parameter Monte Carlo 

simulations cannot be used to assess the joint spatial uncertainty of the results. In earth 

sciences, one seldom has sufficient data to accurately reveal the entire underlying 

subsurface conditions. Typically in basin modeling one has to estimate the input 

parameters for the entire area with only a few data points. Spatial modeling techniques 

have to be used to make the best geological interpretation and understand the 

associated uncertainties.  

Geologic facies is a key input for BPSM process because many important 

geophysical and petrophysical properties of the rocks are wrapped into the facies 

definition. Multi-point geostatistical (MPS) algorithm is the state-of-the-art method 

that generates multiple geological models that honor the geological interpretation and 

the well data at the same time. It is more suitable for facies modeling than traditional 

variogram-based methods. We will examine the impact of facies distribution by 

generating multiple facies map realizations using MPS method.  

The present-day geologic structure model is the starting point for compaction 

analysis. Structure models are usually built based on picking and interpretation of 

seismic data with constraints at wells. Well data is considered exact, while each step of 

the seismic processing chain (acquisition, preprocessing, stacking, migration, 

interpretation, and time-to-depth conversion) has inherent uncertainty that must be 

evaluated and integrated into the final result. It is also pointed out that the time-to-

depth conversion uncertainty often represents 50% or more of the total uncertainty in a 

model [11]. In this paper we study the impact of uncertainty in geologic structure 

using Bayesian kriging for seismic time-to-depth conversion. COHIBA software is 

used to generate multiple realizations of the structure model.  

The rest of this paper is organized as the follows. Section 2 presents the traditional 

uncertainty analysis on parameters including TOC (Total Organic Carbon), HI 

(Hydrogen Index) and heat flow using PetroMod risking functionality. Section 3 

studies the impact of facies uncertainty and section 4 studies structure uncertainty 

from seismic time-to-depth conversion. The results are compared with the traditional 

uncertainty assessment. Finally, a sampling method is proposed to reduce the number 
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of models that are required in the ensemble-based workflow to evaluate total model 

uncertainty. The discussion ends with conclusions and future work. 

2. Traditional uncertainty analysis 

In this section we show the results of a traditional parameter uncertainty analysis on 

important parameters including TOC, HI and heat flow using a Monte-Carlo approach. 

PetroMod has built-in functionality for such kind of uncertainty analysis. 

The generation and maturation of hydrocarbon components, molecular biomarkers, 

and coal macerals can be quantified by chemical kinetics, TOC and HI [5]. TOC is the 

ratio of the mass of all carbon atoms in the organic particles to the total mass of the 

rock matrix. HI is the ratio of the generative mass of hydrocarbon to the mass of 

organic carbon. HI multiplied with TOC and the rock mass is equal to the total 

generative mass of hydrocarbons in the rock [5].  

Another important parameter usually risked is the heat flow at the base of the 

sediment, called basal heat flow. Magnitude, orientation, and distribution of the heat 

inflow at the base of the sediments are determined by mechanical and thermal 

processes of the crust and mantle [1]. 

2.1. Input model 

A 3D synthetic layer cake model is used for our analysis (Figure 2). The model 

consists of five layers, and from bottom to top are: Underburden layer, Organic lean 

shale layer, Source rock layer, Reservoir rock layer and Overburden layer; these terms 

are defined in Magoon and Dow [6]. The model has 120 grid cells in the x direction 

and 30 in the y direction. Each grid cell represents a region of 1 km x 1 km area. The 

total region covers an area of 120 km x 30 km.  The total depth is more than 4500 

meters. 
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Figure 2: 3D display of the layer cake model 

Figure 3 shows the same model in 2D sections. On the left is the vertical cross-

section of the model; the thin dark layer in the middle is the organic-rich hydrocarbon 

source rock. The top right figure shows the lithologic facies of the reservoir rock layer 

in plan view. It consists two facies: sandstone (yellow) and organic lean shale (dark 

blue). The bottom right is the depth of the reservoir rock in plan view. The reservoir 

top is deeper on the left side and becomes shallower towards the right side.  

 

  

Figure 3: 2D view of the input model. Left: Vertical section; Top right: facies map of reservoir 

layer in plan view; Bottom right:  depth map of the reservoir layer in plan view.  

The deposition setting is summarized in Figure 4. Each layer is deposited over a 10 

million year timespan except for the source rock layer, which is formed in 1 Ma. The 

reservoir layer has a channel fluvial depositional setting and is made of two types of 

facies. Erosion is not considered in this scenario. 



6 

 

 

Figure 4: Age assignment of each layer  

The lithologic facies definition is summarized in Figure 5.  The source rock layer is 

assigned a lithology of “Shale (typical)”, which has 5% TOC and an HI of 500 mg 

hydrocarbons per gram of TOC. The kinetics of Pepper&Corvi (1995)_TII(B) is used, 

indicating an oil prone source rock. The reservoir layer contains both typical sandstone 

and organic lean shale. The sandstone acts as the trap for generated hydrocarbons and 

the shale acts as a barrier for fluid flow.  

 

 

Figure 5: Facies definition of major lithologies.  

The boundary conditions required by PetroMod are shown in Figure 6. We accept 

default values for each. These are: heat flow of 60 mW/m², paleowater depth of 0 m, 

and surface temperature of 20° C. 
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Figure 6: Boundary conditions 

The initial simulation result is shown below in Figure 7. The total oil 

accumulation in the reservoir rock layer is about 1378 MMbbls. The oil was generated 

from the source rock layer and migrates up to the reservoir layer. The oil then 

continues to move toward the high elevation area. The organic lean shale in the 

reservoir layer acts as the flow barrier, allowing the accumulation of oil in simulated 

stratigraphic-type traps.  

 

Figure 7: Simulation result for the base case with oil accumulation of 1378 MMbbls 

2.2. TOC  

We first performed the risking analysis on TOC values. An extensive range of TOC 

value from 1% to 10% is studied. We see the oil accumulation increases as the TOC 

value increases. The total accumulation varies from 500 to 2300 MMbbls. Typical 

values of TOC range from 3% to 7%, and correspondingly the oil accumulation varies 

from 1100 to 1700 MMbbls. Figure 8 shows the simulation results and also the 

estimated oil accumulation distributions.  
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Figure 8: TOC risking results. The estimated distribution gives P10 of 973, P50 of 1395 and P90 

of 1992 MMbbls. 

2.3. HI 

A similar study is performed for hydrogen index. For the typical HI value ranging 

from 300 to 700 mgHC/gTOC, the oil accumulation is between 1100 and 1700 

MMbbls. We see the result is similar to the result of TOC risking.  

 2.4. Heat flow 

Heat flow is another uncertain parameter for risk analysis is commonly performed in 

basin modeling. We tested a range of heat flow values around the default value of 60 

mW/m². At very low heat flow values there is no oil accumulation due to the absence 

of hydrocarbon generation. As the value increases to above 40 mW/m² the oil 

accumulation increases dramatically and reaches a peak at a heat flow of 50 mW/m². 

Then the oil accumulation starts to decrease because of secondary cracking—oil is 

cracked into gas. Figure 10 shows that gas starts to accumulate when heat flow is 

above 60 mW/m².  
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Figure 9: HI risking result. The estimated distribution gives P10 of 981, P50 of 1368 and P90 of 

1905 MMbbls 
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Figure 10: Heat flow results. Oil accumulation starts at 43 mW/m2 and gas generation activates 

at heat flow above 60 mw/m2. 
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3. Facies uncertainty 

We now turn to the spatial uncertainty associated with spatially heterogeneous 

lithologic facies distribution. Assume that the reservoir rock consists of mainly two 

facies, sand and shale, in a channel depositional environment. From estimated channel 

width, wavelength, and amplitude, a training image is created representing the best 

conceptual geological understanding of the spatial distribution. In addition a few well 

logs are available as hard constraints. With all these available data, one can build 

multiple facies maps for the reservoir rock layer using multiple-point geostatistical 

algorithms. We used SNESIM [10] to generate facies realizations from the training 

image, conditioned to the well data. Figure 11 shows 4 possible realizations out of the 

50 realizations from SNESIM. All these facies maps have the same shale to sand ratio 

of 50%:50%. 

 

   

   

Figure 11: Four facies map selected from the 50 realizations. Yellow color represents sandstone 

and dark blue is organic lean shale 

All these models were input into PetroMod for simulation, yielding 50 different 

scenarios for volume and distribution of oil; these 50 models used the same parameters 

and boundary conditions as in the initial model. For difference facies distribution, we 

get P10 of 558, P50 of 965 and P90 of 1848 MMbbls (Figure 12).  
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Figure 12: Oil accumulations for 50 realizations 

To compare the impact of uncertainty in spatial distribution of lithologic facies to 

other modeling inputs, the mean and standard deviation are calculated and shown in 

Figure 13. We can see that the facies distribution has similar impact as TOC and HI on 

volume of accumulated oil. Thus it should also be considered as an important 

parameter for risking analysis.  
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Figure 13: Mean and standard deviation for different parameters 

Another important factor is that besides the volume of oil accumulation, the spatial 

pattern of oil accumulation is also different. Four simulation results are shown below 

Figure 14 in which the green polygons illustrate discrete oil accumulations. We can 

see that for different lithologic facies distributions, the geometric distributions of oil 

accumulations differ.  

 

    

    

Figure 14: Different oil accumulation patterns 

3.1. Homogeneous reservoir layer 

In basin and petroleum system modeling, it is common that modelers will select a 

homogeneous lithology for an entire model layer even when the layer was deposited 

over great geologic distances and/or timespans. We studied this scenario by assigning 

a typical sandstone lithology for the entire reservoir rock layer in our 3D model. The 

result is shown in Figure 15. The oil accumulation volume is surprisingly low, with 

only 310 MMbbls. 
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Figure 15: Oil accumulation is only 310 MMbbls for a homogeneous reservoir layer 

3.2. Different training image 

We selected another geologic scenario to condition the training image for the reservoir 

rock layer in the basin model. Figure 16 shows several realizations of a more 

heterogeneous scenario, that of a delta environment. 

 

Figure 16: Facies distribution maps using a more heterogeneous training image 

Again 50 simulations were performed with all other settings exactly the same as 

before. The result is compared against the results above. We can see in Figure 17 that 

the oil accumulation distribution is quite different from the previous models. There is 

much more oil accumulated with the mean value of 3082 MMbbls. The variance is 

also higher with a standard deviation of 1006.    
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Figure 17: Results for a different training image is quite different from the example above. Both 

mean and variance are higher for the more heterogeneous scenario  

4. Structural uncertainty  

Structural models for a basin are usually constructed based on depths determined from 

two-way seismic travels times supplemented by depths from well logs. The well data 

are accurate to within a few meters, but are usually available at scattered locations. In 

contrast, seismic travel times are usually available on a spatially extensive grid, which 

allows an almost continuous but inexact description of the lateral depth trends. Many 

geostatistical methods have been developed to combine the exact well measurements 

with seismic travel time data to make the best prediction of the structure model and 

quantify the associated uncertainties. Abrahamsen [3] compared different methods and 

concluded that Bayesian kriging is one of the more suitable approaches for depth 

prediction because all data are included and all intercorrelations between surfaces and 

interval velocity fields are considered. 

Traditionally the time-to-depth conversion is performed for each layer 

independently. Abrahamsen [2] proposed an approach to integrate all surfaces and the 

estimated velocity field in one consistent model using Bayesian kriging, as described 

in Omre and Halvorsen [7]. The approach is briefly summarized here. 

The travel time ( )
l

t x  is considered as an average of an area, so the ‘true’ travel 

time to the reflector l is modeled with a residual as 
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( ) ( ) ( )t

l l lT x t x R x= + . (1) 

The interval velocity is modeled with a lateral trend and residual as 

1

( ) ( ) ( )
lP

p p v

l l l l

p

V x A g x R x
=

= +∑ , (2) 

where 
p

lA  are the prior coefficient parameters, 
p

lg  are the known regression 

functions which are typically interval velocities from stacking velocities or functions 

of interpreted travel times. The model can be formulated as 

1 1 1

( ) ( ) ( ) ( ) ( ) ( )
lPL L

p p v z

l l l l l L

l p l

Z x A g x t x R x t x R x
= = =

= ∆ + ∆ +∑∑ ∑ , (3) 

where Z(x) is the depth to surfaces. The Bayesian kriging predictor and the 

corresponding variance are 
* 1

0 0( ) ( ) k ( ) ( )z zZ x f x x K Z Fµ µ−= ⋅ + −  

* 1( ) ( ) k ( ) k ( )T

z z z zx k x x K xσ −= − , 

(4) 

Where 

1

( ) ( ) ( )
L

l l

l

f x g x t x
=

= ∆∑ . (5) 

0
µ  is the prior mean of coefficient parameters A, ( )

z
k x  is the prior variance of 

Z(x), k ( )
z

x  is the prior covariance between Z(x) and the data vector Z, and 
zK  is 

the covariance matrix. 

The key advantage of Bayesian kriging is that unlike kriging-with-trend, it is stable 

for any number of coefficients and data, including cases without well observations [3]. 

This is important for basin structural modeling because it is usually done at an early 

stage of exploration when very few well data are available.  

4.1. Depth maps 

The geologic structure of a hydrocarbon reservoir rock is an important factor for oil 

accumulations. We are interested to assess the impact of oil accumulation due to 

uncertainty in reservoir layer interpretation. A synthetic time map is generated for the 

reservoir layer shown below (Figure 18).  
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Figure 18: Synthetic time map 

Multiple depth maps are then generated from the time map using the COHIBA 

software that performs Bayesian kriging. Two well points are available as exact data; 

these are located at coordinates (102, 8) and (11, 21). Figure 19 shows the predicted 

depth maps at the top part and the corresponding error at the bottom part. The depth 

prediction is exact at the well location and the error is small near the wellbore region. 

However, it is clear that with only two well constraints, the predicted depth throughout 

the rest of the region can be incorrect by more than 300 meters. 

 

 

Figure 19: Multiple realizations of depth map and the corresponding errors 

Ten realizations of the reservoir rock depth are generated and input into PetroMod 

for simulation. The result is shown in Figure 20. We see that there are differences in 

the volume of accumulated oil, but that the uncertainty is smaller compared to the 

previous examples. One reason could be that the depth variations are localized and the 

overall structure is still very similar. 
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Figure 20: Oil accumulation for different depth realizations 

5. Reducing the number of simulations 

We have just shown that spatial uncertainty of lithologic facies distributions is an 

important factor in the overall uncertainty of a basin and petroleum system model. In 

the example above, 50 facies map realizations were studied. However, the generation 

and simulation of 50 models in BPSM is time consuming. For the spatially limited 

(120 x 30) models we have, this experiment required tens of hours to do the simulation 

for all the models. Because spatial uncertainty analysis in basin and petroleum system 

modeling is still in its infancy, modeling with ensembles of facies distributions is not 

yet an automated functionality in any BPSM package. This means that one has to do a 

significant amount of manual work. The question is can we reduce the amount of 

models that are required for simulation and still get a good approximation of the 

uncertainty profile? One approach is to use distance and kernel methods [9]. Using 

multi-dimensional scaling (MDS), with an appropriate distance metric, multiple 

models are mapped to a low-dimensional space. Kernel clustering method is then used 

in the low-dimensional space to select a subset of realizations that are representative 

for the uncertainty space. We used the Euclidean distance to do MDS using the 50 

facies realizations. Figure 21 shows the plot of the 50 realizations in two dimensions, 

and the 7 clusters from kernel K-means clustering.  
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Figure 21: Facies maps displayed in metric space in clusters 

Is the subset of 7 realizations a good representative of the uncertainty space from 

50 realizations? Figure 22 shows the oil accumulation for the 7 selected models (blue 

dots) on top of all the 50 realizations (red stars). The accumulated oil volume through 

time is plotted for each model. We see that the 7 selected realizations span most of the 

original uncertainty space, though some extreme values are missed. 
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Figure 22: The 7 selected models (blue) span the most part of the prior distribution from 50 

models (red)   

Figure 23 compares the pdf and cdf of oil accumulation from the subset of selected 

realizations to the ones obtained from all 50 realizations. Again we see a good match 

showing that the 7 models can reasonably capture the distribution from the 50 models. 
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Figure 23: Comparison of 7 models from kernel K-mean clustering to the 50 prior models shows 

a good match for estimated pdf and cdf   

6. Conclusions and future work 

Uncertainty is an intrinsic complication in Basin and Petroleum System Modeling 

because of the large spatial and temporal scale of the problem. The traditional 

methodology is to do Monte Carlo simulations on the input parameters. This is done in 

this study as the benchmark. The spatial uncertainties including facies and structure 

are not studied before. We applied the geostatistical methods to generate multiple 

realizations of facies and structure map. The corresponding uncertainty in oil 

accumulation and oil distribution is assessed. We showed that facies distribution has a 

great impact on the simulation results and different geological interpretation could 

lead to very different results.  In fact, variations in the volume of accumulated oil due 

to lithologic facies variations are equally if not more important than variations in TOC, 



21 

 

HI, and basal heat flow. Thus it is important that the modeling process account for 

both varying lithologies within a reservoir rock and the spatial correlation among 

them. Structure uncertainty on the other hand does not have as great impact in this 

example as we expected. One reason is that we only considered the uncertainty in 

time-to-depth conversion assuming the seismic picks are perfect. One important future 

work is to investigate different time horizon interpretations. 
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