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Abstract Runoff production on a hillslope during a rainfall event is governed by 

different processes, among which the well-known runoff-runon process. It arises 

at different scales, on plots or hillslopes which display heterogeneous infiltration 

rates. The runoff produced in an area of low infiltration rate may re-infiltrate 

downslope in an area of high infiltration rate. Therefore runoff is organized in 

patterns of random position and extension. When the rainfall rate increases these 

zones connect and produce the runoff peak as observed in streams during rainfall 

events, for instance. The 1D stationary runoff-runon equations are similar to the 

queueing equations in probability and statistics. In this framework we investigate 

by means of numerical simulation the influence of the infiltration rate statistics on 

the runoff formation. We show that the statistics greatly influence the extension of 

the runoff patterns and the associated flow rates.    
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1. Introduction 

Assessment and prediction of peak flow genesis or water erosion during a rainfall 

event involves an accurate knowledge of runoff formation, runoff volume and rate 

during the event. Indeed, these physical characteristics depend on the rainfall 

intensity evolution during the event, land-cover as well as many soil parameters 

such as soil composition, moisture content, crusting and slope.  

At the plot or hillslope scale, runoff is often generated by infiltration excess: 

when a rainfall event starts, soil surface is quickly saturated by rainfall infiltration. 

After surface saturation, rainfall that cannot infiltrate ponds and produce runoff if 

the slope gradient is sufficient. This process was described originally by Horton 

[4] who proposed an empirical expression for the time evolution of the infiltration 

rate. Horton's description is justified for ideal plots (homogeneous soil, plane 

surface, no vegetation and no surface evolution) or homogeneous soil columns 

used in laboratory infiltration experiments. Horton states that when the rainfall 

rate, assumed to be constant with time, is greater than the soil hydraulic 

conductivity the infiltration rate tends over time to the hydraulic conductivity, 

whatever the rainfall rate value. Observation of field infiltration at the plot-scale, 

for instance, under natural or simulated rainfall, often exhibits a dependency upon 

rainfall intensity, which is inconsistent with Horton's description. Indeed, 

simulated rainfall experiments show that steady state infiltration rate increases 

with rainfall intensity, and may tend to a plateau at high rainfall intensities. 

Two reasons are put forth by authors to explain qualitatively this dependency: 

Point infiltration rate variability and microtopography (see for instance the review 

of Dunne [3]). At the plot scale crusts, vegetation cover, micro topography and 

their combined effects generate a heterogeneous soil surface with a wide panel of 

infiltration rates. Therefore the point infiltration rate varies spatially and the 

fraction of the plot area for which hydraulic conductivity is smaller than the 

rainfall rate increases with this rate. As a result the apparent infiltration rate, sum 

of the point infiltration rates divided by the plot area, is an increasing function of 

the rainfall rate. Concerning the impact of microtopography it has been observed 

that some of the rainfall water is stored in microdepressions and when rainfall rate 

increases this stored water may be released and routed downslope to others micro-

pools where it may infiltrate or stored again, or to the plot outlet producing 

measurable runoff, see for instance [2] for a discussion and a simulation of the 

process. Moreover, infiltration variability and microtopography give rise to the 

well-known runoff-runon process where runoff generated upslope in a low 

permeability area may infiltrate downslope in a permeable area [8,12].  

 

The complexity of the processes involved in runoff production leads many 

authors to use empirical approaches to predict runoff and its increase with rainfall 

intensity. These are essentially the Soil Conservation Service (SCS) runoff curve 

number or the even simpler runoff coefficient approach. This partitioning 
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coefficient, like the SCS equation, cannot be linked by a model to the soil physical 

properties. Since the end of the seventies different authors tried to propose 

alternative solutions based on simple physical considerations on the infiltration 

rate variability on a plot. 

Lafforgue [10] is one of the first authors who investigated theoretically the role 

of this variability on runoff production. Based on field observations made in West-

Africa he proposed to model the plot as a statistical ensemble of point infiltration 

rates described either by a uniform or a bimodal law. Within this approach he 

showed how the mean infiltration rate over the plot increases with the rainfall rate. 

Hawkins [7,8] proposed also the same statistical approach assuming that the plot 

may be viewed as a set of parallel strips aligned along the slope with infiltration 

rates given by an exponential distribution. Hawkins showed that infiltration rate 

increases exponentially with rainfall rate and tends to a maximum value equal to 

the mean statistical infiltration rate and called the maximum infiltration rate. The 

opposite case where the strips are orthogonal to the slope has never been 

investigated theoretically. Indeed, it raises the problem of how to take into account 

the runoff-runon process in the runoff transport equation.  

The aim of this paper is to show how queueing theory, developed in operational 

research for telecommunications and others fields, may serve, as already observed 

by Jones [9], as a framework to take into account the runon-runoff process. We 

consider the case of a constant rain falling on a slope made up of pixels with 

infiltration rate distributed randomly according to different laws. The influence of 

the infiltration rate statistics on the runoff formation is analysed. 

2. Runon-runoff as a queueing process 

The domain, which may represent either a plot or a hillslope, is modelled as a 

simple idealized one dimensional flat soil surface. Microtopography, and 

consequently runoff storage in microdepressions, is neglected. Local infiltration is 

described by a threshold infiltration function depending on a single parameter 

called soil infiltrability. Infiltrability encompasses all physical processes that 

influence infiltration locally, such as crusting, vegetation or soil structure. It is the 

maximal rate of water that the soil can infiltrate. In this approach the ponding time 

is neglected and all the available water (runon plus rainfall) infiltrates instantly as 

long as water supply is inferior to infiltrability. Infiltration excess overland flow is 

therefore the only mechanism supposed to produce runoff. 

The one dimensional domain is divided into N pixels of size Δx. The 

infiltrability I is assumed to be constant over time and distributed randomly in 

each pixel. The rainfall rate is also independent of time and set uniformly along 

the slope. Let us call Qi the runoff flow per unit width from pixel i to pixel i+1, 

where index i increases down slope. At steady state the runoff mass balance in 

pixel i is given by: 
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Qi+1 = Max(Qi + R – Ii , 0)      (1) 

 

where Ii is the infiltrability in pixel i. If Qi = 0 then runoff is produced in pixel i+1 

only for R > Ii+1 and if Qi ≠ 0 runoff is produced as long as Qi + R > Ii+1 (Fig. 1). 

The total water flow rate Qi + R can be considered as an effective rainfall rate for 

pixel i. The boundary condition in pixel i = 1 is an imposed runoff flow, which 

may be zero (at the top of a hillslope) or non-zero (at the top of a plot for 

instance). 

 
Fig. 1  Notations for the slope discretization in pixels. Qn+1 is the runoff flowing out of pixel n 

onto pixel n+1. It is the result of runoff mass balance over pixel n, where In is the infiltrability, R 

rainfall amount falling over that pixel and Qn the upslope runoff input (i.e. runon).  

 

The above runon-runoff equation (1) describes a random nonlinear sequence 

which cannot be approximated by a more tractable equation. Simulation shows 

that, for a realization of a given infiltrability random field, the corresponding 

random runoff flow rate field defines wet (Q ≠ 0) and dry (Q = 0) areas of random 

positions and extensions in the domain. Indeed, the areas producing runoff, where 

R > Ii, are included in the wet areas and the difference between the wet area and 

the area producing runoff is due to runon occurrence. 

Jones et al. [9] were the first authors to remark that the runoff-runon equation 

(1) is identical to the waiting time equation in a single server queue. These authors 

used the considerable mathematical literature on queueing systems to derive some 

statistical results on the runoff flow rate (mean and variance) and on the connected 

length at the bottom of a domain. They assumed no spatial correlation of 

infiltrability between two pixels (white noise random field). In queueing theory Qi 

is the waiting time of customer i, R the service time and Ii the inter-arrival time 

between customers i and i-1. The traffic parameter ρ, defined by equation (2), 

stands for the adimensioned rainfall intensity in hydrology. For an introduction to 

the queueing theory, refer to [11] for instance.  

 

ρ = R / <I>        (2) 

 

Thanks to the queueing theory framework, equation (1) may be solved for some 

infiltrability distributions like the classical exponential white noise. In this work 

we consider three others distributions: uniform, bimodal and log-normal. The 
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basic quantity to compute is the distribution of the runoff flow rate Q, Pr(Q ≤ x), 

which leads to different quantities of interest: the mean and the variance of the 

flow rate, the wet area fraction, 1-Pr(Q = 0), the dry area fraction, Pr(Q = 0), the 

distribution of the runoff patterns lengths, the mean number of these patterns per 

unit length, as well as connectivity parameters. All these quantities are further 

discussed in [5], where we also propose some theoretical results for the bimodal 

distribution that will be used in the following. The two other distributions have no 

solution. 

3. Simulations and results 

We consider a flat 1D slope of length L = 12 000 pixels, where each pixel is 

assigned a value of infiltrability generated according to an uncorrelated probability 

distribution chosen among log-normal, exponential, bimodal and uniform. The 

log-normal distribution is characteristic of soil infiltrability over basin scales, 

whereas the exponential is commonly employed to represent smaller scales such 

as plots and bare soils. The bimodal distribution may be useful to generate 

synthetic crusted soils: two surface states or two different soils, one with high 

infiltration capacity, the other non-infiltrating (the proportion of each of these 

values is set at 50% in this study). Finally, the uniform distribution was considered 

rather for its mathematical properties and simplicity. This comprehension of 

distributions as representations of specific scales or soil characteristics may be 

exploited when analysing the following results, thus improving our understanding 

of runoff scale effect (more in [5]).  

The random variable is generated with software R functions for random 

numbers. The rainfall intensity imposed uniformly over the slope varies between 

zero and two times the mean infiltrability (0 ≤ ρ ≤ 2). In order to observe a 

stationary runoff distribution for rainfall values up to ρ = 0.9 approximately, the 

2000 first upslope pixels are removed from all simulations. Consequently the real 

domain length is 10 000 pixels long.  

 

Figure 2) displays the distribution of the runoff flow rate along the slope for the 

four infiltrability distributions at ρ = 0.4. We observe clearly that the spatial 

organization of runoff depends on the nature of the infiltrability distribution. The 

figure also shows the runoff-runon process: runoff occurs in zones where R > I. 

The highest runoff flow occurs for the bimodal distribution and the lowest for the 

uniform (the exponential is second highest after the bimodal). This hierarchy can 

be easily understood as for an identical rainfall rate, each distribution intercept the 

threshold R differently. The runoff production is even more enhanced with 

increased proportion of infiltrability below R. In this respect, the bimodal 

distribution is extreme as all low infiltrability values are set to zero.  
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Fig. 2  Spatial organisation of runoff (in blue) and infiltrability (grey) over the slope for the 

different infiltrability distributions, at ρ = 0.4 (rainfall intensity in green).  

 

Figures 3 a) and b) display respectively the mean and the variance of the runoff 

flow rate, adimensioned by the mean infiltrability, as functions of ρ and for the 

four infiltrability distributions. The nonlinearity of runoff flow rate as a function 

of rainfall intensity is obvious, especially for values of ρ lying between 0.5 and 1. 

For ρ > 1, runoff becomes linear and is no more influenced by the infiltrability 

distribution, as the entire slope is overflown. For ρ < 1, the infiltrability 

distribution has a great influence on the runoff production. For a given rainfall 

intensity, the mean flow rate is multiplied by several orders of magnitude between 

bimodal and uniform infiltrability distributions. This follows the same ranking as 

the one discussed previously. High mean runoff means extremes of infiltrability in 

the low values. Figure 3b) shows that the high runoff production relates to high 

runoff variability and the hierarchy between distributions observed in term of 

mean runoff is conserved.  
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a)  

b)  

Fig. 3  Adimensioned mean runoff rate (a) and runoff variance (b), as a function of rainfall 

rate (ρ). The theoretical results obtained from the queueing theory are displayed as solid lines 

(blue for the exponential distribution, red for bimodal) and compared to the numerical 

simulations (symbol lines).  

 

Figure 4) compares the wet area fractions, that is the fraction of pixels on 

which runoff occurs, for the different infiltrability distributions. The wet area 

fraction for the exponential distribution is linear, as predicted by theory (blue 

line), and is equal to ρ. The log-normal infiltrability evolve somehow in the same 

way, the fraction is lower for small values of ρ and reaches unity almost linearly. 

However, for rainfall intensities below 0.5, the log-normal density is much lower 

than the exponential. The exponential probability density function (pdf) has its 

highest probability at infiltrability zero, whereas the log-normal pdf is maximal for 

low but non-zero values of infiltrability. This is why the density of runoff 

producing pixels is higher for exponential pdf than for log-normal ones: there is a 

high probability that runoff is readily produced for the smallest non-null rainfall in 

the exponential case. The uniform density curve is the lowest, except for reduced 

rainfall intensities, which observation supports the associated low mean runoff 

values discussed in figure 3). 
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Fig. 4  Runoff wet area fraction (number of pixels where runoff occurs over the total number 

of pixels) compared between the four infiltrability distributions and confronted to the theory 

(colour lines).  

 

Finally, it is the bimodal wet area fraction that is most strong-shaped and 

original. Our theoretical developments (red line) accurately predict the observed 

evolution. The curve starts at the origin without rainfall, then 50% of the domain 

is immediately flooded for the smallest rainfall intensity. Then the fraction is 

almost constant until ρ = 0.5 approximately, and it increases linearly for rainfall 

amounts above ρ = 0.6. The wet area fraction does not increase notably for the 

low rainfall intensities because there is a threshold at ρ = 0.5 that need to be 

breached. The bimodal slope being a random succession of pixels of either 0 or 

2<I> infiltrability values, only a rare series of non-infiltrating pixels can generate 

a sufficient runoff amount to overcome the threshold of 2<I> at the end of the 

series. On the other hand, as soon as rainfall intensity exceeds ρ = 0.5, even a 

single non-infiltrating pixel flanked by two infiltrating pixels will overflow the 

next downslope element. Consequently, the runon process is obviously non-active 

for small rainfall intensities (which is true for any distribution to a certain degree, 

as commented just then) and the wet area fraction for the bimodal case increases 

very slowly under the threshold. 
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Fig. 5  Mean number of runoff patterns per unit length for each distribution, with the 

exponential theory in blue, as a function of the adimensioned rainfall rate.  

 

The mean number of runoff patterns per unit length, as shown in figure 5), 

confirms the results already discussed over figure 4), but also brings some more 

precisions about the organization of the flow. At low rainfall intensities, the 

hierarchy bimodal > exponential > uniform > log-normal mirrors the last 

discussion about the wet area fraction. Again we find that the mean number of 

patterns for the bimodal distribution is almost constant until ρ = 0.5. Thus the 

slope is covered by numerous small runoff patterns that begin to widen and 

connect to each other when the threshold is breached. On the contrary, for the 

other distributions of infiltrability, the maximum amount of runoff patterns is 

encountered for rainfall intensities around ρ = 0.6. For these distributions, runoff 

organizes in rather small size and isolated runoff patterns for low values of ρ. As 

the rainfall amount increases, more and more patterns appear until the runon 

process is strong enough to connect neighboring patterns. When the rainfall 

reaches this critical value, which correspond to the dominance of runon and 

connectivity over pattern generation, the mean number of runoff patterns decrease. 

The runon process widens and connects all the patterns, rather quickly for the 

bimodal distribution and slowly for the uniform, until the slope is overflown with 

one last runoff pattern. The critical rainfall is different for each distribution of soil 

infiltrability. It is high for the uniform and low for the exponential. This means, as 

hinted previously, that the exponential distribution rather favours the runon 

process and the resulting aggregation of runoff clusters, whereas uniform 

distributions prevent it to some extent. This remark is consistent with the mean 

runoff hierarchy in figure 3), that is higher runoff amounts leads to higher patterns 

appearance, thus higher probability of merging patterns and improved 

connectivity. 
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Fig. 6  For the exponential distribution, comparison of the runoff wet area fraction (solid line) 

with the fraction of pixels for which the rainfall rate exceeds infiltrability (dotted line), as a 

function of rainfall.  

 

In figure 6), we compare the wet area fraction defined for the flow rate Q (same 

as in fig. 4) with the fraction of pixels for which I < R along the slope for the 

exponential distribution, as a function of rainfall rate. If the runoff-runon process 

was not modelled, equation 1) would be linear and runoff would only be produced 

where rainfall exceeds the soil infiltrability. Therefore the difference between the 

solid and dotted line reflects the evolution of runon importance with ρ. We 

understand that while the rainfall rate is small (ρ < 0.2 approximately), runon 

scarcely occurs and both curves are identical. Then as ρ increases, the runoff 

production becomes non-linear because of the runon process occurrence. This is 

why the wet area fraction always exceeds and differs from the fraction of pixels 

where runoff is produced (I < R).  

4. Conclusion 

We showed in this paper that queueing theory is well suited for the description of 

runoff formation, especially the runon-runoff process. The connectivity of the 

runoff layer, as defined by Allard [1], is discussed in [5]. We also underlined the 

strong link between infiltrability and runoff statistics: the bimodal infiltrability 

distribution leads to the highest runoff flow rates, whereas the uniform to the 

lowest. The next step is the study of the transient runoff formation during a 

rainfall event [6]. For this purpose the queueing theory seems to be still the good 

framework.  



11 

 

References 

[1]  Allard, D. HERESIM Group, 1993. On the connectivity of two 

random set models: the truncated Gaussian and the Boolean. 

Geostatistics Troia, Vol. 92, 467-478. 

[2]  Darboux, F., Gascuel-Odoux, C., Davy, P., 2002. Effects of surface 

water storage by soil roughness on overland-flow generation. Earth 

Surface Processes and Landforms 27, 223–233. 

[3]  Dunne, T., Zhang, W., Aubry, B., 1991. Effects of rainfall, vegetation, 

and microtopography on infiltration and runoff. Water Resources 

Research 27 (9), 2271–2285. 

[4]  Horton, R., 1933. The role of infiltration in the hydrologic cycle. 

Transactions of the American Geophysical Union 14, 446–460. 

[5]  Harel, M-A., Mouche, E., 2012. 1D runoff production in the light of 

queueing theory: heterogeneity, connectivity and scale. In preparation 

for Water Resources Research.  

[6]  Harel, M-A., Mouche, E., 2012 / 2013. 1D runoff production in the 

light of queueing theory: the transient case. In preparation 

[7]  Hawkins, R., 1982. Interpretations of source area variability in 

rainfall-runoff relations. In: Rainfall-Runoff Relationship, V.P. Singh 

(ed.). Water Resources Publications, Fort Collins, CO, pp. 303–324. 

[8]  Hawkins, R., Cundy, T., 1987. Steady-state analysis of infiltration and 

overland flow for spatially-varied hillslopes. Journal of the American 

Water Resources Association 23, 251–256. 

[9]  Jones, O., Sheridan, G., Lane, P., 2009. A stochastic runoff model 

incorporating spatial variability. 18th World IMACS Congress and 

MODSIM09 International Congress on Modelling and Simulation. 

[10]  Lafforgue, A., 1977. Inventaire et examen des processus élémentaires 

de ruissellement et d’infiltration sur parcelles: application à une 

exploitation méthodique des données obtenues sous pluies simulées. 

Cahiers-ORSTOM. Hydrologie 14, 299–344. 

[11]  Medhi, J., 1991. Stochastic Models in Queueing Theory. Academic 

Press Professional Inc., San Diego, CA. 

[12]  Nahar, N., Govindaraju, R., Corradini, C., Morbidelli, R., 2004. Role 

of runon for describing field-scale infiltration and overland flow over 

spatially variable soils. Journal of Hydrology 286 (1-4), 36–51. 

 


