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Updating multipoint simulations using the 
ensemble Kalman filter  

L.Y. Hu1, Y. Zhao2, Y. Liu3, C. Scheepens4 and A. Bouchard5     

Abstract In the last two decades, the multipoint simulation (MPS) method has 
been developed and increasingly used for building complex geological facies 
models that are conditioned to geological and geophysical data. In the meantime, 
the ensemble Kalman filter (EnKF) approach has been developed and recognized 
as a promising way for assimilating dynamic production data into reservoir 
models. So far, the EnKF approach is proven efficient for updating continuous 
model parameters that have a linear statistical relation with the flow responses. It 
remains challenging to extend the EnKF approach to updating complex geological 
facies models generated by MPS, while preserving their geological and statistical 
consistency. 

In this paper, we introduce a new method for parameterizing geostatistical 
reservoir models generated by MPS. It is mathematically proven that updating 
these parameters during a history matching process does not compromise the hard 
data conditioning and the geological and statistical consistency of the reservoir 
model defined by the training image and other information including global facies 
proportions, trend maps etc. This method is an alternative to the gradual 
deformation method but has an enlarged search space for covering possible 
solutions. Based on the above parameterization, we present two algorithms of 
using EnKF approach to update multipoint simulations to dynamic data. We also 
present encouraging results of using the above methodology to condition a sector 
model of a fluvial reservoir to dynamic data. 
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Introduction 

In the last two decades, the multipoint simulation (MPS) method has been 
developed and increasingly used for building complex geological facies models 
that are conditioned to geological and geophysical data (Guardiano and 
Srivastava, 1993; Strebelle, 2000). Unlike traditional geostatistical simulations 
based on random function models, a multipoint geostatistical simulation does not 
require the explicit definition of a random function. It directly utilizes empirical 
multivariate distributions inferred from training images. This confers on MPS 
method a potential applicability to any geological environment, provided that 
there is a training image representative of the geological heterogeneity and that the 
essential features of this training image can be characterized by statistics defined 
on a limited point configuration (i.e., template). Hu and Chugunova (2008) 
provide a comprehensive review of the MPS for reservoir modeling. 

In the meantime, the ensemble Kalman filter (EnKF) approach has been 
developed and recognized as a promising way for assimilating dynamic 
production data into reservoir models (Evensen, 1994). Aanonsen et al. (2009) 
give a comprehensive review of the EnKF in petroleum engineering. The EnKF 
approach is proven efficient for updating continuous model parameters that have a 
linear statistical relation with the flow responses. Liu and Oliver (2005) first 
extend the EnKF approach to a truncated Gaussian facies model by using the 
underlying continuous Gaussian variables as model parameters. The EnKF 
approach is also used for updating Gaussian mixture models (Dovera and Della 
Rossa, 2007; Sun et al., 2009). Moreover, several methods are introduced in the 
literature for representing MPS facies models using continuous parameters (e.g., 
Moreno and Aanonsen, 2007; Jafarpour and McLaughlin, 2007; Sarma et al., 
2008). However, it is not mathematically proven that updating these parameters 
will preserve the geological and statistical consistency of the MPS facies models 
defined by training images and other given structure parameters. 

Recently, Zhou et al. (2011) propose, at each data assimilation time step, to 
apply a normal score transformation, independently, to each component of the 
state vectors, and to update the transformed state vectors. Their method can 
actually preserve the univariate non-Gaussian distribution of the MPS model. But 
from the theoretical point of view, it is unclear whether the method can preserve 
the higher order spatial features of the MPS model in the general case. Jafarpour 
and Khodabakhshi (2011) propose, at each data assimilation time step, to update 
the ensemble of log-permeability fields whose mean field is used to derive a facies 
probability field, then to use the MPS algorithm to generate a new ensemble of 
log-permeability fields conditioned to the facies probability field for the next data 
assimilation time step. With this method, the dynamic data are actually used as a 
soft constraint for generating MPS realizations. 

In this paper, we propose a different parameterization method to represent the 
MPS facies models with a set of continuous parameters. This is motivated by the 
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fact that changing or optimizing these parameters will not compromise the 
geological and statistical consistency of the MPS facies models. Then, we 
associate the above parameterization method with the EnKF approach for dynamic 
data integration. This association extends the applicability of the EnKF to complex 
geological facies models generated by MPS. We also present results of using the 
above method to update a sector model of channelized reservoir built by 
multipoint simulation. 

2. Parameterization of multipoint simulations 

2.1 Sequential multipoint simulation 

We consider the commonly used sequential algorithm for multipoint simulation. 
The sequential simulation algorithm requires defining an order or path according 
to which the points in the simulation field are visited and simulated one after 
another. This simulation path can be regular or irregular, and it can be fixed prior 
to generating realizations. For each point of the simulation field, we calculate the 
probability distribution of the facies property conditioned to the facies at the data 
points and at the already simulated points. This conditional distribution is based 
on the multipoint statistics from the training image. Then, we draw a facies 
property from this conditional distribution using a uniform random number 
between 0 and 1. There is a uniform random number for each simulation point. 
The ensemble of uniform numbers constitutes a spatially independent uniform 
field (or vector). 

Therefore, like the general case of sequential simulation, building geomodels 
using the sequential MPS algorithm can also be considered as a mapping that 
transforms a field of independent and uniformly distributed random numbers into 
a field of geological properties distributed according to a training image and a set 
of structural parameters (e.g., global facies proportions) (Hu et al., 2001). Namely, 
given a training image Ti and a set of structural parameters S , a geomodel M

 

is a function of a spatially independent uniform random field U , i.e. 

)(, UM STi        (1) 

Hereafter, we simply call U uniform field or uniform white noise. From the 
above definition, it is clear that any realization drawn from the uniform field U 
gives a MPS realization that is consistent with the training image and the specified 
structural parameters. 

Updating realizations of the MPS model (1) consists of changing the training 
image (geological scenarios) Ti , modifying the structural parameters S and/or 
updating the uniform field U . In general, there are only a few geological 
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scenarios (training images) and a limited number of structural parameters (global 
facies proportions, etc.) to be considered. However, the uniform field has a huge 
number of components that equals the number of cells of the geomodel. Moreover, 
to preserve the spatial consistency of the geomodel, these components cannot be 
arbitrarily modified and instead must remain a uniform white noise. 

2.2 Parameterization 

We propose a parameterization of the uniform field that allows us to reduce the 
huge number of parameters of the geomodel (1), and at the same time to preserve 
the geomodel spatial consistency when modifying these parameters during the 
subsequent uncertainty analysis and history matching processes. 

Let 1U , 2U , , nU be a series of uniform fields that are independent between 

each others. We define a new random field V as a linear combination of 

1U , 2U , , nU 
n

i
iin UrrrrV

1
21 ),...,,( 

where ),(ir are the combination coefficients. In practice, it is more 

convenient to use the tangent transformation 

2
i

i tgr

 

and to use )1,1(i  as parameters instead of ir . 

The mean of V equals 2
i ir , and the variance of V equals 122

i ir . 

However, unlike the linear combination of Gaussian random fields that remains 
Gaussian, the linear combination of uniform fields is no longer uniform, except for 

the trivial cases where 1ir and 0jr for niij ,...,1,1,...,1 . Figure 1 

shows the histogram of a realization of a linear combination of 100 uniform fields, 
which is clearly not uniform.   

Figure 1: Histogram of a linear combination of 100 uniform fields. 



5  

Nevertheless, we can transform V into a uniform field U by the uniform 
score transformation (also known as uniform anamorphosis) 

)()( VFU

       

(2) 

where 

 

stands for the parameter vector ),...,,( 21 n . Like the normal score 

transformation (Gaussian anamorphosis), the uniform score transformation is 
performed component per component for the vector V and the transformation 
function is entirely determined by the marginal cumulative distribution function 
(cdf) of V . Except for the case of small number n, it is very tedious to derive the 

analytical expression of this cdf. In practice, we resort to the empirical cdf of V 
to calculate U  (Figure 2).  

 

Figure 2: Uniform score transformation. 

Now, we replace the uniform field U in the definition (1) by the combined 

uniform field )(U defined by (2). Therefore, given n independent realizations 

of the uniform field, the geomodel (1) becomes a function of n coefficients 

n,...,, 21  of their combination: nSTiM ,...,, 21, . 

These combination coefficients can be arbitrarily modified without 
compromising the spatial consistency of the MPS realization. Thus they can be 
updated using any optimization method during the subsequent uncertainty analysis 
and history matching processes. 

The above parameterization method is an alternative to the gradual deformation 
method (Hu, 2000, Le Ravalec et al., 2000). It differs from the gradual 
deformation in that the uniform fields are directly combined instead of converted 
to Gaussian random fields for their combinations. Another feature of the method is 
that, unlike the gradual deformation method, the sum of the squares of the 

combination coefficients ir is not limited to 1. Actually, the range of ir is (- , 

), allowing an enlarged realization space to cover possible solutions. 
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3. EnKF applied to multipoint simulations 

We consider two algorithms of using the ensemble Kalman filter (EnKF) approach 
to update geomodels generated by MPS. The first algorithm is to update directly 
the uniform field U , and the second algorithm is to update the combination 

coefficients n,...,, 11 . Figure 3 is a schematic representation of the two 

workflows based on the above two algorithms. The first algorithm involves as 
many parameters as the number of cells of the geomodel, whereas the second 
algorithm involves a user defined number of parameters. To simplify the 
presentation, we consider, for both algorithms, the geological scenario (training 
image) is fixed, although different scenarios can be considered in practice. 
Besides, we also fix the structure parameters, although they can be updated 
simultaneously with the uniform field or with the combination coefficients 

n,...,, 21 .  

 

Figure 3: Two workflows of updating MPS to dynamic data using EnKF. 

Note that the idea of using the uniform field in definition (1) as parameters in 
inverse modeling is also proposed by Capilla et al. (1999). However, in their 
inverse modeling algorithm, the uniform field (called probability field in their 
paper) is perturbed by a spatially correlated field. Thus, the resulting probability 
field is no longer a uniform white noise and, the subsequent realization is no 
longer consistent with the definition (1) where U must be a uniform white noise. 
In later work on using the uniform field as parameters in inverse modeling, the 
uniform field is parameterized and updated by using the gradual deformation 
method (Hu et al., 2001; Capilla and Llopis-Albert, 2009), thus remains a uniform 
white noise during the updating process. The following inverse modeling 
algorithms based on EnKF also preserve the characteristics of the uniform white 
noise, thus the characteristics of the geomodel by definition (1). 
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3.1 EnKF applied to the uniform random field 

Consider first using the EnKF approach to update directly the uniform field. The 
algorithm is as follows: 
Initiation: 

1. Set 0t  for the initial time step; 

2. Generate an initial ensemble of n uniform fields: )(xU t
i , ni ,...,2,1 . 

Dx , where D stands for the reservoir field or grid; 

3. For all uniform fields )(xU t
i , compute their corresponding standard 

Gaussian fields using the inverse standard Gaussian cdf: 

)]([)( 1 xUGxY t
i

t
i , ni ,...,2,1 ; 

Iteration: 

4. Build the reservoir model )(xM t
i for each uniform field )(xU t

i , 

ni ,...,2,1 , according to definition (1); 

5. Perform flow simulation for each )(xM t
i between time steps 0 and 

1t ; 

6. Update the ensemble of Gaussian fields { )(xY t
i , ni ,...,2,1 } using 

EnKF from time step t  to time step 1t : { )(1 xY t
i , ni ,...,2,1 }; 

7. For all the updated Gaussian fields )(1 xY t
i , compute, component per 

component, their corresponding uniform fields using the standard 

Gaussian cdf: 1

1
1 )(

)(
t
i

t
it

i

xY
GxU , ni ,...,2,1 , where 1t

i

 

stands for the (empirical) standard deviation of the Gaussian field 

)(1 xY t
i ; 

8. Set 1tt ; go to 4 until the last time step. 
Note that, at each time step of the sequential updating procedure, only the 

geomodel realizations are updated by EnKF, their corresponding pressure and 
saturation fields are obtained by performing fluid flow simulations from the initial 
time step 0t . This avoids the inconsistency between the updated geomodel 
realizations and their corresponding flow responses, but obviously requires much 
more CPU time for flow simulation. 

As pointed out by Aanonsen et al. (2009), a Gaussian field updated by EnKF is 
a linear combination of the initial Gaussian fields, thus remains Gaussian. The 
EnKF shares this feature with the gradual deformation method. The difference is 
that, when using the above EnKF algorithm, the model parameters are the 
components of the Gaussian fields instead of their combination coefficients with 
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the gradual deformation method. However, the Gaussian realizations updated by 
EnKF are not necessarily standard Gaussian. They need to be standardized before 

their back transform to uniform fields at step 7. The fact that )(1 xU t
i  for Dx

 

remains a uniform white noise guarantees the subsequent consistency of the 
geomodel realization, for instance in teams of the geometric features defined by 
the training image and the given structural parameters. 

3.2 EnKF applied to the combination coefficients 

Consider now using the EnKF approach to update the coefficients of combining a 
set of uniform fields. The number of combination coefficients is user defined. In 
general, we use a small number of parameters (combination coefficients) with 
respect to the number of cells N of the geomodel. Thus, we have a reduced 
flexibility for modifying the geomodel and for matching the dynamic data. The 
algorithm is as follows: 
Initiation: 

1. Generate an ensemble of n uniform fields: )(xUi , ni ,...,2,1 , 

Dx  the reservoir field (grid); 
2. Set 0t  for the initial time step; 
3. Generate an initial ensemble of k uniform vectors 

),...,,( ,2,1,
t

nl
t
l

t
l

t
l , kl ,...,2,1 , all components of these 

vectors are uniform numbers between -1 and 1; 

4. For all vectors t
l , kl ,...,2,1 , compute their corresponding standard 

Gaussian vectors: ),...,,( ,2,1,
t
nl

t
l

t
l

t
l YYYY

 

with 

t
il

t
il GY ,

1
, 5.05.0 , ni ,...,2,1 ; 

Iteration: 

5. For each vector of combination coefficients ),...,,( ,2,1,
t

nl
t
l

t
l

t
l , 

perform the linear combination:
n

i
i

t
il xUtg

1

, )(
2

, then compute its 

corresponding uniform field )(xU t
l by the uniform score 

transformation; 

6. Build the reservoir model )(xM t
l for each )(xU t

l , kl ,...,2,1 , 

according to definition (1); 
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7. Perform flow simulation for each )(xM t
l between time steps 0 and 

1t ; 

8. Update the ensemble of Gaussian vectors { t
lY , kl ,...,2,1 } using 

EnKF from time step t  to time step 1t : { 1t
lY , kl ,...,2,1 }; 

9. For all the updated Gaussian vectors 1t
lY , kl ,...,2,1 , compute their 

corresponding vectors of combination coefficients: 

),...,,( 1
,

1
2,

1
1,

1 t
nl

t
l

t
l

t
l  with 12 1

,
1

,
t
il

t
il YG , ni ,...,2,1 ; 

10. Set 1tt ; go to step 5 until the last time step. 
Note that, unlike the first algorithm, the ensemble size of the above EnKF 

algorithm is denoted k instead of n that is used for denoting the number of uniform 
fields in both algorithms. Like the first algorithm, only the geomodel realizations 
are updated by EnKF, their corresponding pressure and saturation fields are 
obtained by performing fluid flow simulations from the initial time step 0t . 

Likewise, each updated vector ),...,,( 1
,

1
2,

1
1,

1 t
nl

t
l

t
l

t
l YYYY remains Gaussian, 

but not necessarily standard Gaussian (its variance may differ from 1). However, 

unlike the first algorithm, these Gaussian vectors ,1t
lY kl ,...,2,1 do not need 

to be standardized before their back transform to uniform vectors at step 9. This is 
because the geomodel realizations following steps 5 and 6 are geologically and 
statistically consistent for any values of the combination coefficients. 

4. Examples 

A test model of 50×50 cells is created with the multipoint simulation algorithm 
SNESIM (Strebelle, 2000). The model is based on a commonly used training 
image of 250×250 cells representing a fluvial channel system (Figure 4).  

 

Figure 4: Training image of 250×250 cells representing a fluvial channel system. 
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For the purpose of the test, a first random realization is generated and 
considered to represent a sector of a hydrocarbon reservoir (Figure 5). The 
realization is called the target realization and the objective of the test is to 
demonstrate that the proposed EnKF algorithms can be used to assimilate 
simulated dynamic data from the target realization in a history matching process.   

Figure 5: Target realization. 

There are three water injection wells on the left side of the sector model and 
three production wells on the right side of the sector model. All the six wells are in 
the channel facies. This constitutes the hard data conditioning of all model 
realizations. The dynamic data set is composed of the water rate at the three 
injectors, the water rate and oil rate at the three producers. 

An ensemble of 100 initial random realizations based on the above model is 
then generated. Two of them are represented in Figure 6, together with a so called 
channel probability map, which is a graphic representation of the probability of 
finding the channel facies in a particular location and is in essence an average of 
the 100 initial realizations.  

 

a) Realization #40 

 

b) Realization #100 

 

c) Average of 100 realizations 

Figure 6: Two initial realizations (a, b) among 100 and the average of the 100 initial 
realizations representing the initial channel probability map (c). 
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4.1 EnKF applied to the uniform field 

We first use the algorithm described in section 3.1 where the facies model is 
parameterized by a uniform field. The EnKF is applied to assimilate the dynamic 
data set from the target realization to update the initial ensemble. The number of 
parameters to update is actually the number of cells of the facies model, i.e. 2500. 

An ensemble of 100 updated realizations is generated, and two of them are 
shown in Figure 7, together with the channel probability map based on the updated 
ensemble. It may easily be seen that the updated probability map (Figure 7c) 
captures much better the inter-well connectivity of the target (Figure 5) than does 
the initial probability map (Figure 6c). In practice, one may use the updated 
average facies map (updated probability map) for well planning instead of using 
an updated individual realization.  

 

a) Realization #40 

 

b) Realization #10 

 

c) Average of 100 realizations 

Figure 7: Two updated realizations (a, b) among 100 and the average of the 100 updated 
realizations representing the updated channel probability map (c). 

In contrast to the average dynamic response of the initial ensemble, the average 
dynamic response of the updated ensemble is very close to the simulated dynamic 
data from the target realization (Figures 8, 9, 10). Therefore, one may use the 
average production curves of the updated ensemble for production forecasting 
instead of using the individual production curves of the updated ensemble of 
realizations. Note also that, after assimilating the dynamic data, the gap between 
the p10 and p90 curves is much reduced for the water rate of injectors 1 and 2, and 
for both water and oil rates of producer 1, but remains almost unchanged for the 
water rate of injector 3 and for both water and oil rates of producers 2 and 3.  
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Figure 8: Injector water rates from the target realization (dots), the initial ensemble (thick 
dashed line representing the mean, thin dashed lines the p10 and p90) and the updated 
ensemble (thick solid line representing the mean, thin solid lines the p10 and p90). 
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Figure 9: Producer water rates from the target realization (dots), the initial ensemble (thick 
dashed line representing the mean, thin dashed lines the p10 and p90) and the updated 
ensemble (thick solid line representing the mean, thin solid lines the p10 and p90). 
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Figure 10: Producer oil rates from the target realization (dots), the initial ensemble (thick 
dashed line representing the mean, thin dashed lines the p10 and p90) and the updated 
ensemble (thick solid line representing the mean, thin solid lines the p10 and p90). 
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4.2 EnKF applied to the combination coefficients 

Now we use the algorithm described in section 3.2 where the facies model is 
parameterized by a set of combination coefficients. The EnKF is applied to 
assimilate the dynamic data from the target realization by updating the coefficients 
of combining the initial 100 realizations of the previous example. Thus in this 
example, the EnKF deals with 100 model parameters instead of 2500 parameters 
as in the previous example. 

We also use an ensemble of 100 members in this example, although the 
ensemble size can be different from the number of parameters. An ensemble of 
100 initial sets of combination coefficients is generated, and this leads to an 
ensemble of 100 initial realizations of the geomodel. After applying the EnKF 
algorithm in section 3.2, an ensemble of 100 updated realizations is generated. 
Two of them are shown in Figure 11, together with the channel probability map 
based on the updated ensemble of 100 realizations. In general, this probability 
map (Figure 11c) is improved with respect to the initial probability map (Figure 
6c), but it is not as good as in the previous example when updating directly the 
uniform field. This is basically due to the reduction of the number of parameters 
from 2500 to 100, thus the reduction of the flexibility to modify the facies model. 
Moreover, the combination coefficients are global parameters in the sense that 
their modification involves a global change of the facies model.  

 

a) Realization #40 

 

b) Realization #100 

 

c) Average of 100 realizations 

Figure 11: Two updated realizations (a, b) among 100 and the average of the 100 updated 
realizations representing the updated channel probability map. 

There are two ways of increasing the flexibility of the model updating. One 
way is to increase the number of realizations to combine. This increases the 
number of combination coefficients, thus the flexibility to modify the model. Note 
that even if the number of combination coefficients is increased, we may use an 
ensemble size smaller than the number of parameters just like in the previous 
example with 2500 but with an ensemble size of 100. Another way of increasing 
the number of parameters is to divide the reservoir field into a certain number of 
regions, and by updating the combination coefficients in these regions 
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simultaneously but separately. Both ways are investigated for updating a 
continuous property model with gradual deformation parameterization by Heidari 
et al. (2011) and are proven effective. We believe this will also be the case of 
using the parameterization presented in this paper for updating the MPS facies 
model.  

5. Conclusions and discussions 

In this paper, we introduced a new method for parameterizing geostatistical 
reservoir models generated by multipoint simulation. It is mathematically proven 
that updating these parameters during a history matching process will not 
compromise the hard data conditioning and the geological and statistical 
consistency of the reservoir model defined by the training image and other 
information including global facies proportions, trend maps etc. This method is an 
alternative to the gradual deformation method but has an enlarged search space to 
cover possible solutions. Like the gradual deformation method, the method is not 
limited to the MPS and can also be used for parameterizing any geostatistical 
reservoir model. 

Based on the above parameterization, we presented two algorithms of using the 
EnKF approach to update MPS simulations to dynamic data. One algorithm 
applies the EnKF directly to all components of the uniform field and the other 
algorithm applies the EnKF to the coefficients of combination of uniform fields. 
The first algorithm involves as many parameters as the number of cells of the 
geomodel, thus provides a lot of flexibility for updating the ensemble. As for the 
second algorithm, the number of parameters is user defined, and in general much 
smaller than the number of cells of the geomodel. 

For both algorithms, all updated realizations from the two test examples are, by 
construction, consistent with the prior geological and statistical data. However, 
due to the nonlinearity between the model parameters and the dynamic responses, 
many individual realizations from the updated ensemble do not sufficiently match 
the dynamic data. Nevertheless, in the example of direct updating of the uniform 
field, the average dynamic responses of the updated ensemble are very close to the 
dynamic data, and the average facies map (facies probability map) of the updated 
ensemble provides a very good probabilistic representation of the target facies 
distribution. In practice, these average solutions are very useful for production 
forecasting and for well planning. In the example of updating the combination 
coefficients, the efficiency of the EnKF is reduced due to the relatively small 
number of parameters used and an increased nonlinearity between the model 
parameters and the dynamic responses. 

In this work, we explored the basic EnKF method that is optimal for 
assimilating data linearly related to the model parameters. To further improve the 
dynamic data match, one may explore the combination of the MPS 
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parameterization proposed in this paper with a nonlinear EnKF method, e.g., the 
EnKF using distance in kernel space proposed by Park et al. (2008). One may also 
reparameterize the flow responses as proposed by Chen et al. (2009) to reduce the 
non-Gaussianity of the EnKF state vector. These are directions of our future work. 

Another important issue is whether the ensemble of realizations updated by the 
proposed methods can correctly represent the remaining uncertainty about the 
reservoir heterogeneity. This issue is beyond the scope of the present paper and, it 
can only be addressed when we are able to build an ensemble of updated 
realizations that are both geologically realistic and sufficiently history-matched. 
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