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Abstract How complex should a spatial or spatial-temporal geostatistical model 

be in order to suit the purpose for which it is used? This is a common question to 

all applications of geostatistical modeling whether it is mining, petroleum, 

environmental or any other. How many grid-blocks, how many indicator 

categories should we use? Surprisingly very few general and flexible tools are 

available to start addressing this important question. We propose a general 

framework for determining a suitable spatial model complexity on the basis of 

distances obtained from a series of image transformations and the linear 

combinations of these distances thereof.  This general framework is applied in two 

workflows, namely Top-down and Bottom-Up to reach a simple enough set of 

models and demonstrated in an illustrative case. 

 

Introduction 
This study is about uncertainty quantification, so model complexity will be 

defined and evaluated for a set of geostatistical models, not just a single 

realization. Two workflows have been developed to reach the “simple enough” set 

of models: Bottom-Up and Top-down. In the Bottom-up workflow, a set of 

complex models is generated then gradually simplified until the “simple enough” 

set of models are reached. On the other hand, Top-down workflows involve 

building first simple models and then gradually adding detail until a “complex 

enough” set of models is reached. 

 

Bottom-up workflow 
The bottom-up workflow starts with the generation of a set of complex models 

and stops when “a set of simple enough models” is obtained by application of a 

simplification method and tracking the changes of the uncertainty of a response. 

We consider modeling uncertainty of such response as the purpose for which these 

models are built, for example a mine plan, a production forecast, or any other 

computationally demanding decision variable.  In this study we reduce the 

complexity of such models by means of a simplification method, i.e. a repeatable 

operation that renders them computationally less intensive in terms of response 

evaluation while attempting to preserve the features of the complex case as much 

as possible. In order to reach these simple enough set of models in a CPU efficient 

way we use distances of easily computed responses applied on a set of models to 
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estimate the distance matrix for the desired response. In order to know which 

easily computed response distance has similar variations to the desired response 

distance we use desired response distance from a selected set of models to 

calibrate the distances obtained for easily computed responses. We also use those 

selected responses to quantify uncertainty at the given complexity level. We then 

reduce the complexity and carry on reducing complexity until we see large 

changes in our quantification of uncertainty. The bottom-up workflow operates as 

follows: 

Input: A model set with maximal complexity 

Output: A model set with minimal complexity that captures the desired response 

variations in the most complex model set  

1. Start with the most complex model set 

2. Combine easy-to-compute response distances by weighted linear 

combination using some initial weights  

3. while             is similar for simpler model set  

4. Compute easy-to-compute responses for the model set with reduced 

complexity (skip this step for the first iteration) 

5. Combine
 
linearly the distance matrix associated with easy-to-compute 

responses (skip this step for the first iteration)     

6. Perform model selection using the combined distance 

7. Compute the hard-to-compute responses on selected models  

8. Calibrate the weights for easy-to-compute response distances using 

selected hard-to-compute response distances 

9. Compute             for selected response distances  

10. Simplify the model set 

11. end 
 As seen above the complexity is reduced until the uncertainty quantification made 

changed a lot. This points out to the over-simplification of the set of models. 

 

Top-down workflow 
The top-down workflow starts with generating simplistic models. Similar to the 

bottom-up workflow, it is terminates when “a set of simple enough models” is 

reached. It applies a very similar algorithm compared to bottom-up workflow.  

Input: A model set with minimal complexity 

Output: A model set that captures the desired response variations 

1. Start with the simplest model set 

2. Combine easy-to-compute response distances  

3. by weighted linear combination using some initial weights  

4.  

5. while             is similar for simpler model set                                                                                                                

6. Compute easy-to-compute responses for the model set with increased 

complexity (skip this step for the first iteration) 

7. Combine
 
linearly the distance matrix associated with easy-to-compute 

responses (skip this step for the first iteration) 
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8. Perform model selection using the combined distance  

9. Compute the hard-to-compute responses on selected models 

10. Calibrate the weights for easy-to-compute response distances using 

selected hard-to-compute response distances 

11. Compute             for selected response distances  

12. Add detail to (increase complexity of) the model set 

13. end 
Unlike bottom-up workflow, this workflow terminated when the changes of 

uncertainty quantification falls below a given tolerance. This is logical since we 

expect over-simplistic models to change considerably by addition of detail, i.e. 

increase in complexity. 

 

Illustrative case 
The two workflows given above are applied to a flow problem. In this illustrative 

case, earth models are used in the workflows. Complexity is defined as the size of 

the grid on which these models are built on. Accordingly the simplification 

method is upgridding: an operation which decreases the number of grid cells while 

preserving structures within an earth model to some extent.  

The purpose here is to model a problem involving injection of water and quantify 

uncertainty associated with the water-cut.  

By using the bottom-up approach we start with 100X100 grid size (most complex 

model set) and reduce the grid size as the simplification method. In the top-down 

approach we start with 10X10 grid size (simplest model set) and add detail until 

we reach the simple enough set of models. The models that are used for bottom-up 

and top-down workflows are given below.  

 

Figure 1:Earth Models, Most Complex Case (left) Simplest Case (Right) 

In this case the hard-to-compute response is the water cut. In order to estimate the distances 

between water-cuts of earth models we propose image transforms as easily-computed 

responses. In this study we have used Shannon Entropy, Hough Transform, Radon 

Transform and Image Close as easy-to-compute responses.  

 

 

 

 

 

 

Figure 2: Image Transforms Used as Easy-to-Compute Responses 
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Figure 2 shows the easy-to-compute responses whose distances are used to 

estimate the distances between water cut values.  

Applying these two workflows to the model sets given in Figure 1, we get the 

following uncertainty quantification results: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In both cases the total number of flow simulations that is need does not exceed 

45. Moreover, both of the workflows point out to 50X50 Grid as the smallest grid-

size that can be used for uncertainty quantification of water-cut. This value is the 

smallest grid size that can be used to quantify water-cut uncertainty. 
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Figure 3: Uncertainty Quantification within Different Workflows 


