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Abstract Seismic inverse modeling, which transforms obtained geophysical data into 
physical properties of the Earth, is an essential process for reservoir characterization. 
We propose a Markov chain Monte Carlo (McMC) workflow consistent with geology, 
well-logs, seismic data and rock-physics information. The workflow uses Direct 
Sampling (DS), a multiple-point geostatistical method, for generating realizations 
from the prior distribution and Adaptive Spatial Resampling (ASR) for sampling from 
the posterior distribution conditioned to the geophysical data. Sampling is a more 
general approach than optimization as it can assess important uncertainties and not just 
the most likely model. However, since rejection sampling requires a large number of 
evaluations of forward model, it is inefficient and not suitable for reservoir modeling. 
Metropolis sampling is able to perform a reasonably equivalent sampling by forming a 
Markov chain. The ASR algorithm perturbs realizations of a spatially dependent 
variable while preserving its spatial structure by conditioning to subset points. The 
method is used as a transition kernel to produce a Markov chain of geostatistical 
realizations. These realizations are then used in a forward seismic model to compute 
the predicted data which are compared to the observed data. Depending on the 
acceptation/rejection criterion in the Markov process, it is possible to obtain a chain of 
realizations aimed either at characterizing the posterior distribution with Metropolis 
sampling or at calibrating a single realization until an optimum is reached. Thus the 
algorithm can be tuned to work either as an optimizer or as a sampler. The validity and 
applicability of the proposed method is demonstrated by results for seismic lithofacies 
inversion on a synthetic test set of Stanford VI. 
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1. Introduction 

Seismic data play a key role to reduce uncertainty in predictions of rocks and fluids 
away from well control points. However, in real applications it is nearly impossible to 
find a unique relationship between seismic response and reservoir properties. Seismic 
measurements are noisy and have larger scales of resolution than well data.  Moreover, 
the relationships are non-unique due to the limited frequency of seismic waves, the 
forward modeling simplifications, and natural heterogeneity.  

Statistical rock physics accounts for some of the uncertainty using multi-variate 
stochastic relations between elastic parameters and reservoir properties [2, 12, and 13]. 
Many different workflows have been suggested to combine rock physics and 
geostatistical methods in seismic inversion. Bosch et al. [5] classified these approaches 
into two groups, which are the sequential or cascaded approach and the joint or 
simultaneous workflow in a Bayesian formulation. The joint or simultaneous 
workflow accounts for the elastic parameters and the reservoir properties together and 
provides combined uncertainties. These Bayesian workflows include rock-physics 
relations to link reservoir properties and elastic properties and geostatistical models to 
provide geologically consistent prior models. Forward modeled synthetic data are 
compared with obtained seismic data to calculate the likelihood, and the final solutions 
are posterior models consistent with the expected geology, well data and seismic data. 
Gonzalez et al. [7] combined multiple points geostatistics (MPS) and rock physics for 
seismic inversion. They generate multiple realizations of reservoir facies and 
saturations, conditioned to seismic and well data. MPS is used to characterize the 
geologic prior information, and statistical rock physics links reservoir properties to 
elastic properties. Thus their method provided multiple realizations, all consistent with 
the expected geology, well-log, seismic data and local rock-physics transformations. 
However, this workflow did not produce samples of the full posterior probability 
density function but generated multiple optimized models around the mode of the 
posterior. Also the MPS algorithm was inefficient for applying to 3-D and complicated 
actual field cases. 

In posterior sampling methods, rejection sampler [16] is the only one to rigorously 
sample the posterior pdf. However, since it requires a large number of evaluations of 
forward model, rejection sampling is inefficient. Therefore, a key issue is to generate 
prior models and to find the posterior models honoring both spatial constraints and 
seismic data within limited computation time and cost. 

We propose a Markov chain Monte Carlo (McMC) workflow consistent with 
geology, well-logs, seismic data and rock-physics information. The workflow uses 
Direct Sampling (DS), a multiple-point geostatistical method, for generating 
realizations from the prior distribution and Adaptive Spatial Resampling (ASR) for 
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sampling from the posterior distribution conditioned to the geophysical data. Since the 
conventional MPS algorithms such as SNESIM or SIMPAT store all data events from 
the training image [1, 14], computing load is dramatically increased according to the 
size of the template and the number of facies. The DS algorithm [9] characterizes the 
geological prior information and is used to condition to well data. The DS algorithm 
directly samples the training image for any given data event, without storing all 
patterns in a database. Therefore, less memory intensive DS can reproduce the 
structures of complex training images and deal with a wide range of non-stationary 
problems. The ASR algorithm perturbs realizations of a spatially dependent variable 
while preserving its spatial structure. The method is used as a transition kernel to 
produce a Markov chain of geostatistical realizations. These realizations are then used 
in a forward seismic model to compute the predicted data which are compared to the 
observed data. Depending on the acceptation/rejection criterion in the Markov process, 
it is possible to obtain a chain of realizations aimed either at characterizing the 
posterior distribution with Metropolis sampling or at calibrating a single realization 
until an optimum is reached. Thus the algorithm can be tuned to work either as an 
optimizer or as a sampler. The proposed method is demonstrated on a synthetic test 
dataset. 

2. Methodology 

2.1. Seismic inverse modeling in a Bayesian frame 

The transformation of geophysical data into reservoir properties can be posed as an 
inference problem involving the updating of prior knowledge with newly available 
data [15, 16]. It can be expressed as 

௣ܲ௢௦௧ሺ݉ሻ ൌ ܿ ௣ܲ௥௜௢௥ሺ݉ሻ ௗܲ௔௧௔൫݀௢௕௦ െ ݃ሺ݉ሻ൯, (1) 

where ௣ܲ௢௦௧ሺ݉ሻ is the posterior probability density and ௣ܲ௥௜௢௥ሺ݉ሻ is a priori probability 
density. In Equation (1), c is a normalizing constant, and m is the earth model 
parameter configuration. The expression ௗܲ௔௧௔൫݀௢௕௦ െ ݃ሺ݉ሻ൯  is the data-likelihood 
function; and it depends on the observations ݀௢௕௦  and their uncertainty, and the 
forward modeling operator ݃  that maps the model space into the data space. The 
solutions of an inverse problem are the set of earth-model configurations that, when 
forward modeled into synthetic data, match the real data within some tolerance [5].  
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2.2. Sampling posteriors  

2.2.1. Rejection sampling 

Sampling the posteriors is more important than a single optimization result but it takes 
tremendous time and cost. These problems are critical especially in complex models 
such as an actual reservoir case. Tarantola [16] gives a comprehensive overview of the 
available exact methods to obtain representative samples of 	 ௣ܲ௢௦௧ሺ݉|݀ሻ . Rejection 
sampling is based on the fact that the posterior is a subset of the prior distribution, and 
therefore it can be evaluated by sub-sampling the prior. The approach consists in 
generating candidate models ݉∗ that are samples of ௣ܲ௥௜௢௥ሺ݉ሻ	and to accept each of 
them with a probability in Equation (4) 

ܲሺ݉∗ሻ ൌ 	
ሺ݉∗ሻܮ
ሺ݉ሻ௠௔௫ܮ

, (4) 

where	ܮሺ݉ሻ୫ୟ୶ denotes the supremum, which can be any number equal or above the 
maximum likelihood value that can be taken by ܮሺ݉ሻ. The distribution of the resulting 
samples follows posterior distribution of models. Rejection sampling is the only 
method perfectly falsifying incorrect priors. However, since it requires a large number 
of evaluations of	 ௣ܲ௥௜௢௥ሺ݉ሻ, the rejection method is inefficient.  

2.2.2. Iterative spatial resampling 

The Metropolis algorithm [10] is able to perform a reasonably equivalent sampling by 
forming a Markov chain of models, such that the steady-state distribution of the chain 
is precisely the posterior distribution that one wishes to sample from. It is similar to a 
random walk that would preferentially visit the areas where ௣ܲ௢௦௧ሺ݉|݀ሻ	 is high. 
Specifically in reservoir modeling, the issue is how to form and perturb a Markov 
chain while preserving spatial structure of geomodels in the chain. One way is to 
sample a subset of points from previous model in a chain, and use the points as 
conditioning data for the next simulated realization. 

Mariethoz et al. [8] suggested the Iterative Spatial Resampling (ISR) method to 
perturb realizations of a spatially dependent variable while preserving its spatial 
structure. This method is used as a transition kernel to produce Markov chains of 
geostatistical realizations. 
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2.2.3. Adaptive spatial resampling 

The search strategy of ISR performs successive steps in random directions for 
exploring various regions of the solution space. Since the search is stochastic, the 
global minimum will be reached after theoretically, an infinite number of iterations. 
However, in most practical applications, when the subset conditioning points are 
selected at random, it can get stuck in a non-optimal local minimum. In this work we 
improve the efficiency of ISR by adaptive sampling. 

At the every iteration, we compare the predicted seismic data with the observed 
data and thus we have a spatial error map. We can use this information for generating 
the next step. Instead of just randomly sampling a subset of points to condition the 
next realization, we adaptively sample important points having lower residual error 
(see Figure 4). The algorithm probabilistically selects a subset of conditioning points 
with probability based on the residual error pdf; thus lower error points have a higher 
chance to be accepted as a conditioning point. Adaptive Spatial Resampling (ASR) 
accelerates to reach the posterior distribution and efficiently finds an optimal model 
consistent with the given data. The adaptive selection algorithm should be varied 
depending on a type of seismic data. Inverted acoustic impedance data in depth can be 
compared with predicted data directly to calculate a residual error map as shown in 
Figure 4.  

However, since seismograms are recorded in time, direct comparison between data 
and prediction can be misleading because of timeshifts. Two seismograms in Figure 5 
show similar local features at CDP 20; however, since the seismic reflections are not 
exactly overlapped in time axis, directly subtracted residual error is still high 
regardless of similarity of underlying facies. Thus, we propose using trace-to-trace 
cross correlation coefficients to guide the probability of selection. Higher correlation 
coefficient assigns a higher chance to be accepted as a conditioning location for next 
step.  

Performance of ASR can be sensitive to input parameters such as fraction of 
selected conditioning points and number of trace locations in a seismogram section. 
The fraction of subset points controls iteration steps for searching the next better 
model. A large fraction of conditioning points makes too small a progress at every 
iteration step while a small fraction can move in relatively large steps but it may lose a 
spatial structure of previous model. Optimal fraction can be varied depending on the 
problems. We tested the sensitivity to this parameter and found that adaptive 
resampling with 1% proportion performs slightly better than the other values (top, 
Figure 6). In this figure, we can find that retaining a large fraction rapidly reduces root 
mean square error (RMSE) at the beginning but it gets stuck in a local minimum after 
100 iterations. In contrast, chains with 1% fraction move relatively slower but can 
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reach lower RMSE. The number of selected traces is also an important parameter. 
More traces account more horizontal spatial structures while it may lose vertical 
information in the seismic trace since fewer points are selected per trace. Even though 
we assign the same 1% fraction, the number of traces can affect efficiency of the 
Markov chain. The bottom Figure 6 is a sensitivity test within our dataset, and it 
shows 8 trace locations with 1% fraction rate are relatively suitable in this case. 

Mosegaard and Tarantola [11] indicate that their sampling method can also be used 
for optimization, creating a chain of ever-improving realizations by only accepting a 
proposed model if the likelihood improves. Depending on the acceptation/rejection 
criterion in the Markov process, it is possible to obtain a chain of realizations aimed to 
characterize a certain posterior distribution with Metropolis sampling. In the studied 
cases, ASR yields posterior distributions reasonably close to the ones obtained by 
rejection sampling, but with important reduction in CPU cost. 
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3. Test case 

3.1. Synthetic Dataset  

Synthetic 2D facies and seismic dataset are presented to demonstrate the validity of 
the proposed inversion technique. The two-dimensional models used were extracted 
from a modified version of the top layer of the Stanford VI synthetic reservoir. The 
Stanford VI reservoir [6] was created by the geostatistics group at Stanford University 
to test algorithms. All the information about the model relevant to this work is 
summarized in Figure 7. The reference facies model is a sand-shale channel system 
with 80 cells in the vertical (z) direction (dz; = 1m) and 150 cells in x (dx = 25m).  

We show the use of ASR for two types of seismic data. One is where we have P-
impedance inverted from the seismic section (say from a conventional impedance 
inversion), and we use the impedance as an attribute for the stochastic lithofacies 
inversion. The second is where the seismic data are the normal-incidence seismograms 
themselves, before inversion for impedance. Using appropriate rock physics models 
for the sand and shale, we compute acoustic impedance from the P-wave velocities 
and densities. We applied a frequency-domain Born filter for surface seismic 
reflection geometry with a 5~50 (Hz) bandwidth. This is the forward model for the 
impedance data type. For the second case to generate a reference normal-incidence 
seismic section, we assumed convolutional seismic forward modeling without noise 
and applied a 50 (Hz) wavelet. For the inversion process, we assumed that we have 
only the acoustic impedance data or the seismogram section, two wells with log 
information, and a training image.  
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3.2. Results 

First, we generated multiple prior spatial models using multiple-point geostatistical 
algorithm and these are used to find posteriors by rejection sampling. Rejection 
sampling method is one perfect way to represent posterior pdf. However, since it 
requires a large number of evaluations of forward model, it is inefficient. Figure 8 
shows the results as the reference and the E-types (ensemble averages) of models. 
Since the hard data comes from two wells, the E-type map of priors shows its 
limitation of lateral resolution. Rejection sampling is accomplished to represent 
posterior pdf as the reference. We tested ISR and ASR as equivalent sampling 
methods by comparing their results with rejection sampler. 
 

3.2.1. Case 1: acoustic impedance for lithofacies characterization 

When we used acoustic impedance data as the seismic attribute, both rejection sampler 
and ASR found clear channel distribution and these results look the same while ISR 
found similar channel distribution with ambiguity (first row of the Figure 9). However, 
the result of rejection sampler is the average of 125 accepted models after evaluating 
100,000 prior models while ASR with Metropolis algorithm uses 1 Markov chain with 
500 iterations (94 posteriors sampled in ASR and 25 posteriors sampled in ISR). ASR 
shows significantly better efficiency when compared to rejection sampling. The root 
mean square errors (RMSE) versus iterations for the 10 Markov chains are also shown 
in Figure 10 for comparing the predictability of ISR and ASR. ASR chains reached 
lower error zone more rapidly than ISR chains. 
 

3.2.2. Case 2: seismograms for lithofacies characterization 

Since seismogram data has more uncertainty than acoustic impedance due to the 
wavelet effect and time shifts, the predictability of sampling algorithm is critical in 
this case. The performance of ISR and ASR are compared in bottom of Figure 9, and it 
shows a big difference in the E-type result. ASR found similar channel distribution as 
rejection sampler while ISR lost channels away from wells (ISR sampled 25 posteriors 
sampled in a chain). ASR sampled 51 posteriors in 1 Markov chain with 500 iterations 



16 

 
while rejection sampler accepted 140 posteriors among 100,000 priors. Variance map 
(bottom figure in each section) shows that ASR captures the range of uncertainty fairly 
well as compared with rejection sampler. Distance-based representation using multi-
dimensional scaling (MDS) in Figure 11 also shows that the samples from ASR are 
distributed near the reference with the posteriors from rejection sampling. Thus we can 
conclude that ASR can be a fair approximation of rejection sampler. Since our 
reference is located away from the most of priors, rejection sampler is inefficient for 
find posterior models. Sampled posteriors by ISR could not reach the whole posterior 
distribution yet. Hence, ASR can be used as an efficient posterior sampler.  

3.2.3 Case 3: Finding facies not seen in well data 

In this case, we assume one oil sand distribution away from the two well locations. We 
have seismogram data, well logs without oil sand information, and a training image 
(see Figure 12). For this task, we applied realistic rock physics relationship from 
actual well logs, and generated oil sand properties from the brine sand properties at the 
wells using Gassmann’s equation [2]. Figure 12 shows rejection sampler and ASR 
results as probability maps. Rejection sampler found nearly correct distribution 
compared to the reference after 50,000 evaluations while ASR found similar 
distribution using one chain of 1,000 evaluations. In more realistic task, ASR also 
shows its applicability as a fair and efficient sampler. 

3.2.4. ASR as an optimizer 

As an optimizer the performance of ISR and ASR are compared in Figure 13. Here our 
objective is to find optimal models which match the given seismic data. The average 
of 30 chains as a thick line in Figure 13 shows the efficiency of ASR. Especially in the 
early stage of iterations, ASR moves quickly to find a better model while ISR goes 
down slowly with long flat sections. On average ASR can manage to find models with 
much lower rms error. The efficiency can be compared by the number of iterations 
required to reach the same logarithm RMSE; the value of ISR at the 500th iteration 
averaging over 30 chains was the same as the result of the 27th iteration for ASR. 
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computing cost. Thus ASR is suitable for conditioning facies models or characterizing 
reservoir properties to spatially distributed seismic data.  

Depending on the acceptation/rejection criterion in the Markov process, it is 
possible to obtain a chain of realizations aimed either at characterizing a certain 
posterior distribution with Metropolis sampling or at calibrating one realization at a 
time. This study will be applied in actual field data as future task.  
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