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Abstract Seismic inverse modeling, which transforms obtained geophysical data into
physical properties of the Earth, is an essential process for reservoir characterization.
We propose a Markov chain Monte Carlo (McMC) workflow consistent with geology,
well-logs, seismic data and rock-physics information. The workflow uses Direct
Sampling (DS), a multiple-point geostatistical method, for generating realizations
from the prior distribution and Adaptive Spatial Resampling (ASR) for sampling from
the posterior distribution conditioned to the geophysical data. Sampling is a more
general approach than optimization as it can assess important uncertainties and not just
the most likely model. However, since rejection sampling requires a large number of
evaluations of forward model, it is inefficient and not suitable for reservoir modeling.
Metropolis sampling is able to perform a reasonably equivalent sampling by forming a
Markov chain. The ASR algorithm perturbs realizations of a spatially dependent
variable while preserving its spatial structure by conditioning to subset points. The
method is used as a transition kernel to produce a Markov chain of geostatistical
realizations. These realizations are then used in a forward seismic model to compute
the predicted data which are compared to the observed data. Depending on the
acceptation/rejection criterion in the Markov process, it is possible to obtain a chain of
realizations aimed either at characterizing the posterior distribution with Metropolis
sampling or at calibrating a single realization until an optimum is reached. Thus the
algorithm can be tuned to work either as an optimizer or as a sampler. The validity and
applicability of the proposed method is demonstrated by results for seismic lithofacies
inversion on a synthetic test set of Stanford VI.
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1. Introduction

Seismic data play a key role to reduce uncertainty in predictions of rocks and fluids
away from well control points. However, in real applications it is nearly impossible to
find a unique relationship between seismic response and reservoir properties. Seismic
measurements are noisy and have larger scales of resolution than well data. Moreover,
the relationships are non-unique due to the limited frequency of seismic waves, the
forward modeling simplifications, and natural heterogeneity.

Statistical rock physics accounts for some of the uncertainty using multi-variate
stochastic relations between elastic parameters and reservoir properties [2, 12, and 13].
Many different workflows have been suggested to combine rock physics and
geostatistical methods in seismic inversion. Bosch et al. [5] classified these approaches
into two groups, which are the sequential or cascaded approach and the joint or
simultaneous workflow in a Bayesian formulation. The joint or simultaneous
workflow accounts for the elastic parameters and the reservoir properties together and
provides combined uncertainties. These Bayesian workflows include rock-physics
relations to link reservoir properties and elastic properties and geostatistical models to
provide geologically consistent prior models. Forward modeled synthetic data are
compared with obtained seismic data to calculate the likelihood, and the final solutions
are posterior models consistent with the expected geology, well data and seismic data.
Gonzalez et al. [7] combined multiple points geostatistics (MPS) and rock physics for
seismic inversion. They generate multiple realizations of reservoir facies and
saturations, conditioned to seismic and well data. MPS is used to characterize the
geologic prior information, and statistical rock physics links reservoir properties to
elastic properties. Thus their method provided multiple realizations, all consistent with
the expected geology, well-log, seismic data and local rock-physics transformations.
However, this workflow did not produce samples of the full posterior probability
density function but generated multiple optimized models around the mode of the
posterior. Also the MPS algorithm was inefficient for applying to 3-D and complicated
actual field cases.

In posterior sampling methods, rejection sampler [16] is the only one to rigorously
sample the posterior pdf. However, since it requires a large number of evaluations of
forward model, rejection sampling is inefficient. Therefore, a key issue is to generate
prior models and to find the posterior models honoring both spatial constraints and
seismic data within limited computation time and cost.

We propose a Markov chain Monte Carlo (McMC) workflow consistent with
geology, well-logs, seismic data and rock-physics information. The workflow uses
Direct Sampling (DS), a multiple-point geostatistical method, for generating
realizations from the prior distribution and Adaptive Spatial Resampling (ASR) for



sampling from the posterior distribution conditioned to the geophysical data. Since the
conventional MPS algorithms such as SNESIM or SIMPAT store all data events from
the training image [1, 14], computing load is dramatically increased according to the
size of the template and the number of facies. The DS algorithm [9] characterizes the
geological prior information and is used to condition to well data. The DS algorithm
directly samples the training image for any given data event, without storing all
patterns in a database. Therefore, less memory intensive DS can reproduce the
structures of complex training images and deal with a wide range of non-stationary
problems. The ASR algorithm perturbs realizations of a spatially dependent variable
while preserving its spatial structure. The method is used as a transition kernel to
produce a Markov chain of geostatistical realizations. These realizations are then used
in a forward seismic model to compute the predicted data which are compared to the
observed data. Depending on the acceptation/rejection criterion in the Markov process,
it is possible to obtain a chain of realizations aimed either at characterizing the
posterior distribution with Metropolis sampling or at calibrating a single realization
until an optimum is reached. Thus the algorithm can be tuned to work either as an
optimizer or as a sampler. The proposed method is demonstrated on a synthetic test
dataset.

2. Methodology

2.1. Seismic inverse modeling in a Bayesian frame

The transformation of geophysical data into reservoir properties can be posed as an
inference problem involving the updating of prior knowledge with newly available
data [15, 16]. It can be expressed as

Ppost(m) = CPprior(m)Pdata(dubs - g(m))r M

where Py, (m) is the posterior probability density and Pp,,,(m) is a priori probability
density. In Equation (1), ¢ is a normalizing constant, and m is the earth model
parameter configuration. The expression Pyge,(dops — g(m)) is the data-likelihood
function; and it depends on the observations d,,s and their uncertainty, and the
forward modeling operator g that maps the model space into the data space. The
solutions of an inverse problem are the set of earth-model configurations that, when
forward modeled into synthetic data, match the real data within some tolerance [5].



According to the chain rule (see e.g., [3, 4]), decomposing the model space into
reservoir parameters (facies, porosity, etc.) and elastic parameters [seismic velocity
(Vp, and Vs), and density] the prior can be written as:

Pprior (mres' melas) = Pprior (melaslmres)Pprior (mres): (2)

where Py 0 (Mys5) is the prior pdf for the reservoir parameters (including their spatial
distributions) and Ppyior(MeiqslMyes) is a conditional probability for the elastic
parameters that summarizes the rock physics relationships between reservoir property
and elastic property. Thus, the final posterior pdf for the joint rock physics and seismic
inversion is the following combination of Equation (1) and (2):

Ppost(mres’ Meyqs) 3)
=c Pprior (melas |mres)Ppriur (mres)Pdata (dobs - g(melas))-

The petrophysical conditional density Ppior(Mejqs|Myes) is the rock physics
forward function that maps the reservoir model parameters to the elastic model
parameters. Many different seismic inversion workflows combining elastic properties,
geostatistics, and rock-physics models to predict reservoir properties can be presented
in the shape of Equation (3) (Figure 1). This workflow in a Bayesian formulation
guarantees consistency between the elastic and reservoir properties.

Pprior(mres) ‘ Pprior(melas[mres) ‘ Paata(dops — g(Meiqs) )
MPS Statistical Rock Physics Likelihood

Well data Predicted seismic data
I I || "l‘ i L
— i il

|0 W
T

Bivariate pdf

J
- f
i

%
"\

Vp

Figure 1 (left) Multiple models are generated by multiple-points geostatistics as priors, and
(middle) the facies models are converted to Vp and density according to the rockphysics
relationship in the bivariate pdf. (right) To falsify incorrect models, predicted seismograms are
compared to the obtained seismic data. Here we assumed seismic forward modeling without
noise and applied 50 (Hz) as a signal frequency.



2.2. Sampling posteriors

2.2.1. Rejection sampling

Sampling the posteriors is more important than a single optimization result but it takes
tremendous time and cost. These problems are critical especially in complex models
such as an actual reservoir case. Tarantola [16] gives a comprehensive overview of the
available exact methods to obtain representative samples of P,o.(m|d). Rejection
sampling is based on the fact that the posterior is a subset of the prior distribution, and
therefore it can be evaluated by sub-sampling the prior. The approach consists in
generating candidate models m” that are samples of P,,,,-(m) and to accept each of
them with a probability in Equation (4)
L(m*)

L(m)max‘

where L(m)n.¢ denotes the supremum, which can be any number equal or above the
maximum likelihood value that can be taken by L(m). The distribution of the resulting
samples follows posterior distribution of models. Rejection sampling is the only
method perfectly falsifying incorrect priors. However, since it requires a large number
of evaluations of P,,;,-(m), the rejection method is inefficient.

P(m*) = @

2.2.2. Iterative spatial resampling

The Metropolis algorithm [10] is able to perform a reasonably equivalent sampling by
forming a Markov chain of models, such that the steady-state distribution of the chain
is precisely the posterior distribution that one wishes to sample from. It is similar to a
random walk that would preferentially visit the areas where P,,s(m|d) is high.
Specifically in reservoir modeling, the issue is how to form and perturb a Markov
chain while preserving spatial structure of geomodels in the chain. One way is to
sample a subset of points from previous model in a chain, and use the points as
conditioning data for the next simulated realization.

Mariethoz et al. [8] suggested the Iterative Spatial Resampling (ISR) method to
perturb realizations of a spatially dependent variable while preserving its spatial
structure. This method is used as a transition kernel to produce Markov chains of
geostatistical realizations.



Creating a Markov chain using ISR is accomplished by performing the following
steps at each iteration i (Figure 2 and Figure 3):

a. Generate m, and evaluate its likelihood, L(m;) = Pigsq (dobs - g(ml_elas)).

b. Select r; as a subset of points from m,.

c. Generate a proposal model m* by conditional simulation using r; as conditioning
data. We use DS for multi-point geostatistical simulations.

d. Evaluate L(m*) and accept or reject m* by the Metropolis acceptance criterion
[10].

Well data Well data+Sampled data Well data+Sampled data

- - e "

Prior modelm, Prior modelm,

Figure 2 Sketch of the iterative spatial resampling method. An initial model m,is randomly
sampled to obtain the subset, which is used as conditioning data for generating next prior m,.
m, displays similar local features with m;due to the constraints imposed by the conditioning
data, and represents a different realization from the prior multi-point geostatistical model.
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Figure 3 The iteration of a Markov chain using ISR. Left: generated facies models; Right: the
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2.2.3. Adaptive spatial resampling

The search strategy of ISR performs successive steps in random directions for
exploring various regions of the solution space. Since the search is stochastic, the
global minimum will be reached after theoretically, an infinite number of iterations.
However, in most practical applications, when the subset conditioning points are
selected at random, it can get stuck in a non-optimal local minimum. In this work we
improve the efficiency of ISR by adaptive sampling.

At the every iteration, we compare the predicted seismic data with the observed
data and thus we have a spatial error map. We can use this information for generating
the next step. Instead of just randomly sampling a subset of points to condition the
next realization, we adaptively sample important points having lower residual error
(see Figure 4). The algorithm probabilistically selects a subset of conditioning points
with probability based on the residual error pdf; thus lower error points have a higher
chance to be accepted as a conditioning point. Adaptive Spatial Resampling (ASR)
accelerates to reach the posterior distribution and efficiently finds an optimal model
consistent with the given data. The adaptive selection algorithm should be varied
depending on a type of seismic data. Inverted acoustic impedance data in depth can be
compared with predicted data directly to calculate a residual error map as shown in
Figure 4.

However, since seismograms are recorded in time, direct comparison between data
and prediction can be misleading because of timeshifts. Two seismograms in Figure 5
show similar local features at CDP 20; however, since the seismic reflections are not
exactly overlapped in time axis, directly subtracted residual error is still high
regardless of similarity of underlying facies. Thus, we propose using trace-to-trace
cross correlation coefficients to guide the probability of selection. Higher correlation
coefficient assigns a higher chance to be accepted as a conditioning location for next
step.

Performance of ASR can be sensitive to input parameters such as fraction of
selected conditioning points and number of trace locations in a seismogram section.
The fraction of subset points controls iteration steps for searching the next better
model. A large fraction of conditioning points makes too small a progress at every
iteration step while a small fraction can move in relatively large steps but it may lose a
spatial structure of previous model. Optimal fraction can be varied depending on the
problems. We tested the sensitivity to this parameter and found that adaptive
resampling with 1% proportion performs slightly better than the other values (top,
Figure 6). In this figure, we can find that retaining a large fraction rapidly reduces root
mean square error (RMSE) at the beginning but it gets stuck in a local minimum after
100 iterations. In contrast, chains with 1% fraction move relatively slower but can



reach lower RMSE. The number of selected traces is also an important parameter.
More traces account more horizontal spatial structures while it may lose vertical
information in the seismic trace since fewer points are selected per trace. Even though
we assign the same 1% fraction, the number of traces can affect efficiency of the
Markov chain. The bottom Figure 6 is a sensitivity test within our dataset, and it
shows 8 trace locations with 1% fraction rate are relatively suitable in this case.

Mosegaard and Tarantola [11] indicate that their sampling method can also be used
for optimization, creating a chain of ever-improving realizations by only accepting a
proposed model if the likelihood improves. Depending on the acceptation/rejection
criterion in the Markov process, it is possible to obtain a chain of realizations aimed to
characterize a certain posterior distribution with Metropolis sampling. In the studied
cases, ASR vyields posterior distributions reasonably close to the ones obtained by
rejection sampling, but with important reduction in CPU cost.
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Randomly sampled subset points in a residual error map
0

0

Figure 4 Sampling algorithm of the subset points in the ASR. Background green zone is the low
residual points while both red and blue have higher error. In the residual error map, randomly
sampled points (top) are located in both low and higher error zone while adaptive sampling
subsets (bottom) are located preferentially in low error zone.
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Figure 6 Performance assessment for testing different parameters. Top: adaptive resampling
with 1% fraction of conditioning subset points performs slightly better than the other values, but
this can be different depending on the problem; Bottom: The sensitivity of the number of traces
is tested. 8 traces case was an ideal setting in this study.
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3. Test case

3.1. Synthetic Dataset

Synthetic 2D facies and seismic dataset are presented to demonstrate the validity of
the proposed inversion technique. The two-dimensional models used were extracted
from a modified version of the top layer of the Stanford VI synthetic reservoir. The
Stanford VI reservoir [6] was created by the geostatistics group at Stanford University
to test algorithms. All the information about the model relevant to this work is
summarized in Figure 7. The reference facies model is a sand-shale channel system
with 80 cells in the vertical (z) direction (dz; = 1m) and 150 cells in x (dx =25m).

We show the use of ASR for two types of seismic data. One is where we have P-
impedance inverted from the seismic section (say from a conventional impedance
inversion), and we use the impedance as an attribute for the stochastic lithofacies
inversion. The second is where the seismic data are the normal-incidence seismograms
themselves, before inversion for impedance. Using appropriate rock physics models
for the sand and shale, we compute acoustic impedance from the P-wave velocities
and densities. We applied a frequency-domain Born filter for surface seismic
reflection geometry with a 5~50 (Hz) bandwidth. This is the forward model for the
impedance data type. For the second case to generate a reference normal-incidence
seismic section, we assumed convolutional seismic forward modeling without noise
and applied a 50 (Hz) wavelet. For the inversion process, we assumed that we have
only the acoustic impedance data or the seismogram section, two wells with log
information, and a training image.
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Reference Well data

Facies A Wells A

Facies Vp
w1

w2 wi w2 wil w2
Seismic trace: given data Seismic trace: predicted model

Training Image

Figure 7 Left: The spatial distribution of the facies, P-wave velocities (Vp) and densities (p) are
assumed as the reference. The filtered seismic band acoustic impedance and normal-incidence
seismogram are at bottom left. Right: The data of two wells are given as above and the wells are
located at CDP25 and CDP125, respectively. Training image for MPS is shown at the bottom of
the right column.
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3.2. Results

First, we generated multiple prior spatial models using multiple-point geostatistical
algorithm and these are used to find posteriors by rejection sampling. Rejection
sampling method is one perfect way to represent posterior pdf. However, since it
requires a large number of evaluations of forward model, it is inefficient. Figure 8
shows the results as the reference and the E-types (ensemble averages) of models.
Since the hard data comes from two wells, the E-type map of priors shows its
limitation of lateral resolution. Rejection sampling is accomplished to represent
posterior pdf as the reference. We tested ISR and ASR as equivalent sampling
methods by comparing their results with rejection sampler.

3.2.1. Case 1: acoustic impedance for lithofacies characterization

When we used acoustic impedance data as the seismic attribute, both rejection sampler
and ASR found clear channel distribution and these results look the same while ISR
found similar channel distribution with ambiguity (first row of the Figure 9). However,
the result of rejection sampler is the average of 125 accepted models after evaluating
100,000 prior models while ASR with Metropolis algorithm uses 1 Markov chain with
500 iterations (94 posteriors sampled in ASR and 25 posteriors sampled in ISR). ASR
shows significantly better efficiency when compared to rejection sampling. The root
mean square errors (RMSE) versus iterations for the 10 Markov chains are also shown
in Figure 10 for comparing the predictability of ISR and ASR. ASR chains reached
lower error zone more rapidly than ISR chains.

3.2.2. Case 2: seismograms for lithofacies characterization

Since seismogram data has more uncertainty than acoustic impedance due to the
wavelet effect and time shifts, the predictability of sampling algorithm is critical in
this case. The performance of ISR and ASR are compared in bottom of Figure 9, and it
shows a big difference in the E-type result. ASR found similar channel distribution as
rejection sampler while ISR lost channels away from wells (ISR sampled 25 posteriors
sampled in a chain). ASR sampled 51 posteriors in 1 Markov chain with 500 iterations
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while rejection sampler accepted 140 posteriors among 100,000 priors. Variance map
(bottom figure in each section) shows that ASR captures the range of uncertainty fairly
well as compared with rejection sampler. Distance-based representation using multi-
dimensional scaling (MDS) in Figure 11 also shows that the samples from ASR are
distributed near the reference with the posteriors from rejection sampling. Thus we can
conclude that ASR can be a fair approximation of rejection sampler. Since our
reference is located away from the most of priors, rejection sampler is inefficient for
find posterior models. Sampled posteriors by ISR could not reach the whole posterior
distribution yet. Hence, ASR can be used as an efficient posterior sampler.

3.2.3 Case 3: Finding facies not seen in well data

In this case, we assume one oil sand distribution away from the two well locations. We
have seismogram data, well logs without oil sand information, and a training image
(see Figure 12). For this task, we applied realistic rock physics relationship from
actual well logs, and generated oil sand properties from the brine sand properties at the
wells using Gassmann’s equation [2]. Figure 12 shows rejection sampler and ASR
results as probability maps. Rejection sampler found nearly correct distribution
compared to the reference after 50,000 evaluations while ASR found similar
distribution using one chain of 1,000 evaluations. In more realistic task, ASR also
shows its applicability as a fair and efficient sampler.

3.2.4. ASR as an optimizer

As an optimizer the performance of ISR and ASR are compared in Figure 13. Here our
objective is to find optimal models which match the given seismic data. The average
of 30 chains as a thick line in Figure 13 shows the efficiency of ASR. Especially in the
early stage of iterations, ASR moves quickly to find a better model while ISR goes
down slowly with long flat sections. On average ASR can manage to find models with
much lower rms error. The efficiency can be compared by the number of iterations
required to reach the same logarithm RMSE; the value of ISR at the 500th iteration
averaging over 30 chains was the same as the result of the 27th iteration for ASR.
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Figure 8 Representation of the averages of ensembles of models. Top: (left) the reference facies
and averaged prior models; (right) the E-type of rejection sampling results and its variance.
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1. Acoustic Impednace
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Figure 9 Representation of the averages of ensembles of models. Top: (first row) the E-type of
rejection sampling results, ISR and ASR using acoustic impedance as the obtained data; (second
row) the variance of each algorithm, respectively. Bottom: (first row) the E-type of rejection
sampler, ISR and ASR using seismogram section as the obtained data, and (second row) its
variance. Within limited evaluations, ASR show similar E-type and variance map compared
with the result of rejection sampling in both cases.
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Figure 10 Adaptive spatial resampling (blue curves) and iterative spatial resampling (red curves)
are compared as a posterior sampling method for 5 Markov chains. The average of 5 chains for

each case is shown as a thick line. ASR chains reaches reached lower error zone more rapidly
and lively samples the posteriors.
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Figure 11 Multi-Dimensional Scaling (MDS) projection of all models. The gray points are prior
models and the red point is the reference. The blue are the posteriors by rejection sampling and
they are clustered around the true model. ASR and ISR results are shown by green and magenta

points, respectively.
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Reference (80x150) Training image (100x250)
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Figure 12 A case study for detecting oil sand distribution away from wells, when wells do not
have any oil sand. : Representation of the averages of ensembles of models. Top: (left) the
reference three facies and (right) a training image; Bottom: (left) the probability map of
rejection sampler in each facies and (right the probability map of the posteriors sampled by
ASR. Within relatively limited evaluations, ASR show similar probability map compared with
the result of rejection sampler.
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Figure 13 Adaptive spatial resampling (blue curves) and iterative spatial resampling (red curves)
are compared for 30 Markov chains. ASR as an optimizer was faster to find out the most likely
models, and found models with lower rms error. The average of 30 chains for each case is
shown as a thick line. ASR rapidly reduced the residual error especially in the early stage of
iterations.

4. Conclusions

We presented the Adaptive Spatial Resampling method (ASR) for seismic inverse
modeling. ASR perturbs realizations of a spatially dependent variable while preserving
its spatial structure. ASR also accelerates the sampling efficiency without decreasing
range of uncertainty by making use of the residual error at each step of the chain to
condition the next step. In the studied cases, it yields posterior distributions reasonably
close to the ones obtained by rejection samplers, with important reduction in time and
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computing cost. Thus ASR is suitable for conditioning facies models or characterizing
reservoir properties to spatially distributed seismic data.

Depending on the acceptation/rejection criterion in the Markov process, it is
possible to obtain a chain of realizations aimed either at characterizing a certain
posterior distribution with Metropolis sampling or at calibrating one realization at a
time. This study will be applied in actual field data as future task.
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