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Abstract The Direct Sampling (DS) algorithm is a recent multiple-point 

statistical simulation technique. It directly samples the training image (TI) during 

simulation by calculating distances between TI patterns and a given data event. 

Omitting the prior storage of all TI patterns in a catalogue, enables to simulate 

categorical, continuous and multivariate variables. To benefit from the wide 

spectrum of potential applications of DS, the user needs to understand the role and 

significance of the input parameters. Therefore, we listed the most important DS 

parameters and performed a systematic study to assess their significance. Two TIs 

were used: a categorical image of ice-wedge polygons and a continuous image of 

a thin marble slice. All DS applications require the definition of three input 

parameters: the number of neighbors n, the acceptance threshold t and the fraction 

of TI to scan f. We investigated the influence of these parameters on CPU time 

and simulation quality for the 3D parameter space. It was found that decreasing f 

offers substantial computational gains without an important degradation of the 

simulation quality, whereas adjusting t and n to decrease CPU time comes at the 

expense of lower simulation quality. We also illustrated the noise removal 

potential of post-processing and the possibility to simulate bivariate fields and to 

honor conditioning data. For each case, the relevance of the required input 

parameters was evaluated. We provided a comprehensive guide to performing 

multiple-points statistical simulations with the DS algorithm and 

recommendations on how to set the input parameters appropriately.  
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Introduction 

Most multiple-point statistical simulation algorithms first build a conditional 

cumulative distribution function F conditioned to a local data event dn for each 

unknown location of the simulation grid x. The Direct Sampling (DS) algorithm 

skips the explicit modeling of this ccdf. For each x, the training image (TI) is 

randomly scanned. As soon as a TI pattern is found that matches dn exactly or as 

soon as the distance between a TI pattern and dn is lower than a user-defined 

threshold, the value at the central node of this TI pattern is pasted to x. Because of 

this strategy, DS allows to simulate both categorical and continuous variables, and 

to handle multivariate cases. For each variable type, one only has to select the 

appropriate dissimilarity distance [1].  

To run DS, the user needs to define several input parameters. Since DS is a 

promising, but very recent technique, we performed a sensitivity analysis on the 

most important input parameters aiming to encourage (potential) users to benefit 

from the wide spectrum of applications of DS. 

Main input parameters: n, t and f  

Parameter n is the maximum number of known grid nodes xi (including 

conditioning data and already simulated grid nodes) within a defined search area 

that will form dn. Hence, the area covered by dn decreases when the number of 

already simulated grid nodes increases, ensuring that structures of all sizes are 

present in the simulation. Parameter t is the acceptance threshold for a TI pattern 

to be selected. Since all distance types are standardized between 0 and 1, t will 

also be in this range. Parameter f is the maximum fraction of the TI that is scanned 

for each x and also ranges between 0 and 1. If no TI pattern is found that has a 

distance lower than t, the TI pattern with the lowest distance is selected [1].  

For 1200 different combinations of n, t and f we simulated 10 unconditional 

realizations for each TI. Each parameter strongly influenced CPU time: 

simulations with a large number of neighbors n, a low acceptance threshold t and a 

large fraction of TI to scan f required a long simulation time. Consequently, the 

combined effect of relaxing all three parameters only slightly, can drop off CPU 

time. For instance, generating one unconditional simulation for the categorical 

case with parameters t = 0.05, f = 0.5 and n = 50 took 163 s. Relaxing t to 0.1 only 

took 44 s, relaxing all three parameters to t = 0.1, f = 0.3 and n = 30 only took 

13 s. 

Figure 1 illustrates how n, t and f influenced the simulation quality. The 

connectivity error is a measure for the dissimilarity between the connectivity 

function of the TI and the unconditional simulations summed over the different 

categories. Whereas n and t strongly influenced the simulation quality, the effect 
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of f was much smaller. Scanning a smaller part of the TI hardly resulted in a 

quality decrease. This could also be concluded for the continuous TI.  

Generally we recommend to choose n ≥ 30 and t ≤ 0.2 for categorical TIs and 

t ≤ 0.1 for continuous TIs. This choice depends on the affordable CPU time and 

the required simulation quality. Furthermore, for large n and small t the user 

should check if there is still sufficient variability between the simulations, because 

one risks to pick the same best matching nodes in each realization (‘patching’). A 

good strategy to reduce both CPU time and the risk of patching is setting f < 1, 

thus scanning a different fraction of the TI for each x [2].  

 

   
Figure 1: Influence of t and n (for f = 0.5) (left) and f (right) on the simulation 

quality for the categorical TI. 

Post-processing for noise removal 

DS includes a post-processing option targeting the removal of isolated pixels 

(noise) in the simulated images. After having simulated all the unknown grid 

nodes, it is possible to resimulate each node with an entirely informed 

neighborhood. Two post-processing parameters need to be defined: the number of 

post-processing steps p and the post-processing factor pf. The latter is the factor by 

which f and n are divided aiming to save CPU time in the additional post-

processing steps [1]. Figure 2 illustrates the noise removal effect of post-

processing for the categorical ice-wedge TI.  
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Figure 2: Unconditional simulation with n = 50, t = 0.1 and f = 0.5 without post-

processing (left) and with one post-processing step (p = 1 and pf = 1) (right). 

 

By running different test cases, we found that adding an extra post-processing 

step gave the best results for categorical variables and intermediate t values 

(between 0.1 and 0.2). Next to a decrease in the level of noise, post-processing 

allowed for a significant reduction in CPU time. With t = 0.1 and one post-

processing step, one obtained in 58 s realizations similar to when using t = 0.05 

without post-processing, which took 163 s. Although the post-processing option 

also reduced the level of noise in the continuous case, its effect was less 

substantial than for the categorical case and the CPU cost was much higher. For 

both TIs the simulation quality was insensitive to parameters p and pf  [2].  

Hence, it can be considered as good practice to always add one post-processing 

step (p = 1) with pf = 1 when simulating categorical variables. If the simulations 

still contain (too much) noise, parameters t and n should be adapted. 

Multivariate simulations 

Simulating multivariate images is a very new and promising technique first 

offered by the DS algorithm. To run multivariate simulations the user needs to 

construct a multivariate TI which not only represents the expected spatial structure 

of each variable, but also the expected relationship between the m variables. The 

selection of an appropriate multivariate TI pattern for each x is based on a 

weighted averaged of the m selected distance measures. These weights can be 

chosen by the user [1]. Bivariate simulations with one categorical and one 

continuous variable showed that a larger weight given to the continuous variable 

strongly improved its simulation quality [2].  
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Data conditioning 

DS always honors available conditioning data since these are located to the closest 

grid node prior to simulation. It is possible to give these conditioning grid nodes a 

larger weight than the already simulated nodes when calculating the distance 

between dn and the scanned TI patterns [1]. We found that making use of this 

feature strongly improved the coherence of the simulated spatial patterns with the 

conditioning data and prevented them to appear as isolated pixels. When the 

expected uncertainty of the conditioning data is low, giving a weight to the 

conditioning grid nodes that is up to five times larger improves the pattern 

consistency [2]. 

Conclusion 

We reported a comprehensive sensitivity analysis for the DS algorithm that will 

help users to benefit more efficiently from the potential of DS. We concluded that 

it is advised to set n ≥ 30 and t ≤ 0.2 for categorical simulations and t ≤ 0.1 for 

continuous simulations. The smaller t and the larger n, the better the simulation 

quality is and the lower the level of noise, but the higher the required CPU time. 

For small t and large n the user should check if there is still sufficient variability 

between the simulations. Setting f < 1 is a good strategy to reduce both CPU time 

and the risk of patching. Especially for categorical simulations, we recommend to 

always add one post-processing step for noise removal. When simulating bivariate 

images, the weights given to each variable clearly affect simulation quality and 

when conditioning data are available, it is interesting to put the weights given to 

the conditioning data higher than the weights given to the already simulated 

nodes.  
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