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Abstract The main interest lies in obtaining multiple history matched models 

under uncertain geological scenario. Within a Bayesian framework, the only exact 

sampling technique for obtaining multiple such Earth models is the rejection 

sampler, however, it is extremely inefficient for most practical applications. To 

handle this problem, we propose to split the problem in two parts: the first part is 

the traditional question of history matching for a given geological scenario, the 

second part is to determine the probability of that scenario given the production 

data. Comparison with the rejection sampler shows that our technique is accurate 

at a fraction of the cost of rejection sampling. 

 

Methodology 

 

To handle uncertain geological scenarios in a consistent and repeatable 

mathematical framework, the Bayesian approach is applied. 

        
          

    
 

                                            

where, M is a random vector representing the Earth model (which we will assume 

has discrete random variables) and D is a random vector representing data.  

In addition to the gridded model M, some parameters related to the construction of 

this gridded model, such as a geological scenario (which variogram, training 

image, Boolean model type and etc.), is uncertain. To explicitly account for this 

uncertainty, equation (1) is rewritten as,  

              

 

           

where,   is a discrete random variable representing geological scenario 

uncertainty. One can assume the possible number of scenarios to be limited. 

The above equation now divides the history matching problem into two following 

parts. 
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Part 1,          describes a posterior probability of a model M given   and 

 . Since   can be a variogram or a training image and it is fixed as one of the 

discrete outcomes, this problem can be solved by a regional PPM (Caers, J., 

Hoffman, T., 2006) with a fixed variogram or training image. 

Part 2,        is the pre-posterior of the scenario   with given the data  , in 

other words it models the updated uncertainty on the prior geological scenario   

now given the data  . We propose a distance-based approximation method for 

estimating this probability directly. 

 

Example 

 

Here a western African reservoir case (figure 1) with three different training 

images is used for its uncertain geological scenario. Initially 4 production wells / 4 

injectors are producing / injecting from 0 to 2000 days (figure 2). 30 history 

matched models will be obtained based on the production data. The new well will 

be placed at 2000 day and be used for the validation of prediction power of 

proposed methodology with rejection sampler. 

 

 

 
Figure 1: Reservoir description (CW, CC, CE have communication but CD has 

no communication) (above) and 3 Training Images which represent the uncertain 

geological scenario (bottom). 
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Figure 2: Reservoir geometry 

 

 

 
Figure 3: Scoping runs for 3 TIs (above), Adaptive kernel smoothing results for 

each TI (bottom from left to right TI1, TI2, and TI3). 

 

In order to estimate the probabilities of each TI with given data, we perform a 

number of scoping runs and calculate their mutual distance in terms of forward 

model responses. Figure 3 Shows the MDS plot. A simple kernel smoothing 

allows then estimating likelihood at all locations in the MDS plot, including the 

production data location. Simple application of Bayes’ rule then models the pre-

posterior probabilities of each TI given the data. Regional PPM is then used to 

obtain history matched models from each TI (figure 4). We compared the 30 
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history matches obtained in this way with 30 history matches by rejections 

sampler as well performance prediction on a newly planned well. (figure 5). Such 

comparison is favorable at a fraction of the CPU cost of the rejection sampler. 

 
Figure 4: 30 history matching results for 4 production wells by regional PPM 

(left), and rejection sampler (right). 

 
Figure 5: Prediction for 1 year of new well performance by regional PPM (left 

up), rejection sampler (left down) and P10 P50 P90 plot comparison. 
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