
Mixing Tree and List Structures for
Multiple-Point Statistics Simulations

Julien Straubhaar and Alexandre Walgenwitz

Abstract Multiple-point statistics are widely used to simulate complex heteroge-
neous fields. The technique consists in inferring multiple-point statistics of a cate-
gorical variable from a training image. For 3D problems withnumerous facies, large
templates should be used for reproducing complex structures properly. Tree struc-
tures used in classical implementations for storing the multiple-point statistics of
the training image are very RAM demanding and then imply limitations on the size
of the template. On the contrary, using a list structure allows to obtain a straight-
forwardly parallelizable algorithm requiring a small amount of RAM. Nevertheless,
retrieving statistics from a search tree is more efficient interms of CPU time, be-
cause the shortcuts given by the branches of the tree are not present in the list. In
this paper, we propose a new technique mixing list and tree structures for storing
multiple-point statistics inferred from the training image. The idea is to build a tree
of reduced size whose leaves are sub-lists that constitute the entire list when gath-
ering them. This approach benefits from the advantages of both storage techniques:
low RAM requirements are guaranteed by the list structure, while improved effi-
ciency in terms of CPU time is provided by the tree structure and the parallelization.
Numerical tests are performed for comparing the different methods and presented
in this paper.

Julien Straubhaar
The Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Emile-Argand
11, CH-2000 Neuchâtel, Switzerland, e-mail: julien.straubhaar@unine.ch

Alexandre Walgenwitz
Ephesia Consult, Boissonnas 9, CH-1227 Geneva, Switzerland, e-mail:
alexandre.walgenwitz@ephesia-consult.com

1

2 J. Straubhaar and A. Walgenwitz

1 Introduction

Multiple-point statistics (MPS) allows to stochasticallygenerate categorical vari-
ables whose spatial structures are provided by a training image. This method is very
interesting because the spatial characteristics of the structures such their size, shape
and connectivity have an important impact on flow and transport processes [2, 3].

Multiple-point statistics was introduced by Guardiano (1993) [1] and the first ef-
ficient algorithm calledsnesim was developed by Strebelle (2002) [5] who proposed
to store the multiple-point statistics inferred from the training image in a search tree.
Indeed, each pattern within a given template found in the training image is stored
along a path in the tree, whose the number of levels is the sizeof the template.
Hence, the RAM requirements for this method grow very fast infunction of the size
of the template. Using lists instead of search trees,i.e. storing only the leaves of the
tree, allows to drastically reduce the RAM usage [4]. Moreover the list-based algo-
rithm is easily parallelizable since a list can be divided inseveral part in an obvious
way. However, since the branches of the tree are very useful for retrieving statistics,
the algorithm using lists in this serial version is generally slower.

In this paper, we propose to mix list and tree structures for storing multiple-point
statistics. This new method consists to build the list of allpattern found in the train-
ing image for a given template, and then to build a tree indexing the entries in the
list, according to the nodes of the template. The size of the tree is controlled by two
parameters and then the RAM requirements are still low. The resulting algorithm
is still parallelizable: if a list is divided into several parts, a tree is built for each
part. Hence, this new approach gives an improved algorithm in terms of CPU time
demanding low RAM requirements.

2 Storing multiple-point statistics in lists

The multiple-point statistics used for the simulations areprovided by a training im-
age and a search template. Assume thatM is the number of facies present in the
training image and that the facies codes 0 toM−1 are used; letN be the size of the
search template, andτ(u) = {u+ h1, . . . ,u+ hN} be the search template centered at
a nodeu, i.e. the search template is defined by the lag vectorsh1, . . . ,hN in 2D or 3D.
The list consists in a catalogue containing every distinct pattern found in the training
image. With the notations above and ifs(v) denotes the facies code at a nodev, an
element of the list is a pair of vector(d = (s1, . . . ,sN),c = (c0, . . . ,cM−1)), whereci

is the number of occurrences of the data event{s(v+ h1) = s1, . . . ,s(v+ hN) = sN}
found in the training image with the facies codes(v) = i at the central nodev [4]. An
illustration of the list storage technique is given in the Figs. 1 and 2. In this example,
only the locations of the central nodev for which the search templateτ(v) is entirely
inside the training image are taken into account. Note that the patterns centered at a
node in the boundary of the training image can be considered by introducing a new
facies code for nodes that are outside of the training image.Then, the list is used

Mixing Tree and List Structures for MPS Simulations 3

to compute the conditional probability distribution function required by the simula-
tion process,i.e. the probability to draw each facies at a nodeu conditioned by the
simulated nodes in the search template centered atu.

Fig. 1 Training image and
search template

u

1

2

3

4

Fig. 2 List for the training
image and the search template
of the Fig. 1, with the search
template always entirely
inside the training image,
facies code 0 for white node
and facies code 1 for gray
nodes

List elements

L0 = ((0, 0, 1, 1), (0, 1))
L1 = ((0, 1, 0, 1), (0, 2))
L2 = ((0, 1, 1, 0), (0, 2))
L3 = ((0, 1, 1, 1), (1, 0))
L4 = ((1, 0, 0, 0), (1, 0))
L5 = ((1, 0, 0, 1), (0, 2))
L6 = ((1, 0, 1, 0), (1, 1))
L7 = ((1, 0, 1, 1), (1, 0))
L8 = ((1, 1, 0, 1), (0, 2))
L9 = ((1, 1, 1, 0), (1, 1))

3 Indexing the list by a tree

The simulation of a nodeu requires to retrieve the countersc of each element of
the list for which the data eventd is compatible with the already simulated nodes
in the search templateτ(u). To do this, the list is scanned entirely. To avoid an ex-
haustive scan of the list, the idea is to index the list by a tree. The list is sorted
lexicographically according to the data events and the branches of the tree are de-
fined according to the facies code of the data event as for the usual search tree in
snesim [5], and the cells of the tree contains the range of the corresponding elements
in the lists. For a situation withM facies, the tree is anM-ary tree made up of cells
divided inM sub-cells which can have a child cell. If the levels in the tree are num-
bered from 1 and the sub-cells in a cell from 0 toM −1, one can locate a sub-cell
by a path{i(1), i(2), . . . , i(k)} in the tree,i(j) being the identification number of a

4 J. Straubhaar and A. Walgenwitz

sub–cell in a cell of levelj. At the location given by the above path, the sub-cell
contains the index of the first element in the list for which the data eventd begins
by i(1), i(2), . . . , i(k), and one plus the index of the last of those elements. Such a
tree can be cut everywhere and is useful for reducing the range of the elements of
the list that must be scanned to retrieve the counters according to a given data event
partially informed. An example for the list of the Fig. 2 is given in the Fig. 3.

Fig. 3 Tree indexing the list
of the Fig. 2

3.1 Controlling the size of the tree

Two parameters allows to control the size of the tree:

• dmax: maximal depth of the tree,
• smax: maximal size for the sub-lists given by the leaves of the tree.

Note that the depth of the tree is defined as the number of levels minus one, and that
the root of the tree is on level 1. Then, the tree is built by respecting the following
rule.

A sub-cell in the tree has a child cell if and only if it is in a level l < 1+ dmax

and the size of the sub-list given by its indices is greater thansmax.

Note that ifdmax > N −1, whereN is the size of the search template, then there
is no constraint on the depth of the tree. The parametersmax must be greater or equal
to 1. For the tree of the Fig. 3, the parametersmax is set to 3 and the parameterdmax

to a number greater or equal to 2.

Mixing Tree and List Structures for MPS Simulations 5

4 Numerical tests

In this section, the new approach is tested (with serial code) on two examples involv-
ing two training images. The parameterdmax is set to a big number so that only the
parametersmax is relevant in the previous rule for building the indexing tree. Then,
we retrieve the real time spent for 10 realizations and the memory load when using
the new algorithm for varying values ofsmax and when using the pure list-based
algorithm. Note that the realizations obtained are the samefor all tests.

(a) (b)

0 100 200 300 400

40
60

80
10

0

smax

tim
e

in
 %

 o
f r

ef

(1,112.3)

(2, 78.8)

(3, 62.7)
(4, 56.5)

(40, 30.9)

0 100 200 300 400

1
2

5
20

50
20

0

smax

ad
d.

 m
em

. i
n

%
 o

f r
ef

(1,487.6)

(2,207.5)
(3,128.8)
(4, 92.5)

(40, 8.3)

Fig. 4 Time and memory requirements for the new algorithm (withdmax = 99) compared to the
pure list-based algorithm, for example (I); (a) real time inpercent of the reference time (list-based
algorithm), as a function ofsmax; (b) additional amount of memory used for storing the indexing
trees in percent of the amount of memory needed for the lists,as a function ofsmax (logarithm-scale
for vertical axis); the points for first values and for the minimum real time are shown in (a) and (b)

We consider the two examples:

(I) 2D training image of size 250×250 with 2 facies, simulation grid of size 300×
300, 3 multi-grids, and disc-shape search templates containing 100, 60 and 20
nodes from the coarse multi-grid to the fine one;

(II) 3D training image of size 100×100×60 with 4 facies, simulation grid of size
50×50×40, 3 multi-grids, and spherical search templates containing 514, 256
and 32 nodes from the coarse multi-grid to the fine one.

The pure list-based algorithm is considered as the reference. The real time ob-
tained when using the new algorithm is expressed in percent of the reference time
(list-based algorithm) and the additional amount of memoryused for storing the in-
dexing trees in percent of the amount of memory needed for thelists. These results
are plotted as a function of the parametersmax in the Figs. 4 and 5 for the examples
(I) and (II) respectively. The values for time and for memoryusage are plotted on
a same graph in the Fig. 6. For the two examples, a similar behaviour is observed

6 J. Straubhaar and A. Walgenwitz

(a) (b)

0 100 200 300 400 500 60020
40

60
80

10
0

12
0

smax

tim
e

in
 %

 o
f r

ef

(2,125.6)

(3, 99.0)

(4, 82.5)

(5, 68.1)

(114, 24.0)

0 100 200 300 400 500 600

0.
2

1.
0

5.
0

20
.0

10
0.

0

smax

ad
d.

 m
em

. i
n

%
 o

f r
ef

(2,174.2)
(3,108.5)
(4, 76.3)
(5, 58.9)

(114, 1.5)

Fig. 5 Time and memory requirements for the new algorithm (withdmax = 513) compared to the
pure list-based algorithm, for example (II); (a) real time in percent of the reference time (list-based
algorithm), as a function ofsmax; (b) additional amount of memory used for storing the indexing
trees in percent of the amount of memory needed for the lists,as a function ofsmax (logarithm-scale
for vertical axis); the points for first values and for the minimum real time are shown in (a) and (b)

(a) (b)

1 2 5 20 50 200

40
60

80
10

0

add. mem. in % of ref

tim
e

in
 %

 o
f r

ef

(487.6,112.3)

(207.5, 78.8)

(128.8, 62.7)

(92.5, 56.5)

(8.3, 30.9)

0.2 1.0 5.0 20.0 100.020
40

60
80

10
0

12
0

add. mem. in % of ref

tim
e

in
 %

 o
f r

ef

(174.2,125.6)

(108.5, 99.0)

(76.3, 82.5)

(58.9, 68.1)

(1.5, 24.0)

Fig. 6 Time VS memory requirements for the new algorithm (logarithm-scale for horizontal axis);
(a) results for example (I) (Fig. 4); (b) results for example(II) (Fig. 5); the points for first values
and for the minimum real time are shown in (a) and (b)

Mixing Tree and List Structures for MPS Simulations 7

(similar curve shapes). In the two cases, the Fig. 6 shows that the spent time can be
divided by 3 for an additional amount of memory of less than 5%related to the pure
list-base algorithm.

Note that when using classical search trees (as insnesim [5]), we approximately
obtain a real time of 140% and 90% of the reference real time for the examples (I)
and (II) respectively, whereas the memory load is multiplied by a factor of more that
10 and 40 respectively.

5 Conclusions

The tests presented in this paper show that mixing list and tree structures for stor-
ing multiple point statistics allows to significantly improve multiple-point statistics
algorithms. The tree-based algorithm is limited because ofthe important RAM us-
age. The list-based approach overcomes this RAM limitationbut its serial version
is generally slower. Indexing the lists by trees allows for asubstantial gain of time
resulting in better performances than tree-based algorithm, while the RAM usage
remains low. Moreover, this new technique benefits from the parallelization that can
be applied to the lists.

References

1. F. Guardiano and R. Strivastava. Multivariate geostatistics: beyond bivariate moments. In
A. Soares, editor,Geostatistics Troia, volume 1, pages 133–144. Kluwer Academic, Dordrecht,
1993.

2. A. Journel and T. Zhang. Necessity of a multiple-point prior model.Math Geol, 38(5):591–610,
2006.

3. P. Renard. Stochastic hydrogeology: what professionalsreally need?Ground Water, 45(5):531–
541, 2007.

4. J. Straubhaar, P. Renard, G. Mariethoz, R. Froidevaux, and O. Besson. An improved paral-
lel multiple-point algorithm using a list approach.Math Geosci, 43:305–328, 2011. DOI:
10.1007/s11004-011-9328-7.

5. S. Strebelle. Conditional simulation of complex geological structures using multiple-points
statistics.Math Geol, 34(1):1–21, 2002.

