Mixing Treeand List Structuresfor
Multiple-Point Statistics Simulations

Julien Straubhaar and Alexandre Walgenwitz

Abstract Multiple-point statistics are widely used to simulate cdexpheteroge-
neous fields. The technique consists in inferring multjpbéat statistics of a cate-
gorical variable from a training image. For 3D problems withmerous facies, large
templates should be used for reproducing complex strusfur@perly. Tree struc-
tures used in classical implementations for storing thetiplatpoint statistics of
the training image are very RAM demanding and then implytitions on the size
of the template. On the contrary, using a list structurevalto obtain a straight-
forwardly parallelizable algorithm requiring a small anmbof RAM. Nevertheless,
retrieving statistics from a search tree is more efficierteims of CPU time, be-
cause the shortcuts given by the branches of the tree areessrg in the list. In
this paper, we propose a new technique mixing list and treetstres for storing
multiple-point statistics inferred from the training im&ad he idea is to build a tree
of reduced size whose leaves are sub-lists that constitaterttire list when gath-
ering them. This approach benefits from the advantages bfdtotage techniques:
low RAM requirements are guaranteed by the list structut@lenimproved effi-
ciency in terms of CPU time is provided by the tree structmethe parallelization.
Numerical tests are performed for comparing the differeathads and presented
in this paper.

Julien Straubhaar
The Centre for Hydrogeology and Geothermics (CHYN), Ursitgrof Neuchatel, Emile-Argand
11, CH-2000 Neuchatel, Switzerland, e-mail: julienshtaaar@unine.ch

Alexandre Walgenwitz
Ephesia Consult, Boissonnas 9, CH-1227 Geneva, Switzkrlane-mail:
alexandre.walgenwitz@ephesia-consult.com

2 J. Straubhaar and A. Walgenwitz

1 Introduction

Multiple-point statistics (MPS) allows to stochasticatignerate categorical vari-
ables whose spatial structures are provided by a trainiagémThis method is very
interesting because the spatial characteristics of thetsties such their size, shape
and connectivity have an importantimpact on flow and trartgpocesses [2, 3].

Multiple-point statistics was introduced by Guardiano93p[1] and the first ef-
ficient algorithm callednesimwas developed by Strebelle (2002) [5] who proposed
to store the multiple-point statistics inferred from theiting image in a search tree.
Indeed, each pattern within a given template found in thiaitrg image is stored
along a path in the tree, whose the number of levels is theddizke template.
Hence, the RAM requirements for this method grow very fatinction of the size
of the template. Using lists instead of search treesstoring only the leaves of the
tree, allows to drastically reduce the RAM usage [4]. Moexdhe list-based algo-
rithm is easily parallelizable since a list can be dividedéneral part in an obvious
way. However, since the branches of the tree are very usafugfrieving statistics,
the algorithm using lists in this serial version is gengralbwer.

In this paper, we propose to mix list and tree structurestfoirgy multiple-point
statistics. This new method consists to build the list opaltern found in the train-
ing image for a given template, and then to build a tree imiexie entries in the
list, according to the nodes of the template. The size ofrdeeis controlled by two
parameters and then the RAM requirements are still low. Eselting algorithm
is still parallelizable: if a list is divided into several pp&, a tree is built for each
part. Hence, this new approach gives an improved algorithtarims of CPU time
demanding low RAM requirements.

2 Storing multiple-point statisticsin lists

The multiple-point statistics used for the simulationspr@vided by a training im-
age and a search template. Assume Mas the number of facies present in the
training image and that the facies codes Ofte- 1 are used; lelN be the size of the
search template, aru) = {u+hy,...,u+hn} be the search template centered at
anodey, i.e the search template is defined by the lag vedtgrs ., hy in 2D or 3D.
The list consists in a catalogue containing every distiattgon found in the training
image. With the notations above ands(f/) denotes the facies code at a naglan
element of the list is a pair of vectéd = (s, ...,5v),c = (Co,...,Cm-1)), Wherec

is the number of occurrences of the data easN+h;) =s1,...,S(V+hn) = s}
found in the training image with the facies ccg{e) = i at the central node[4]. An
illustration of the list storage technique is given in thgg=il and 2. In this example,
only the locations of the central nodéor which the search templatgv) is entirely
inside the training image are taken into account. Note ti@patterns centered at a
node in the boundary of the training image can be consideyédtimducing a new
facies code for nodes that are outside of the training im#gen, the list is used

Mixing Tree and List Structures for MPS Simulations 3

to compute the conditional probability distribution fuiact required by the simula-
tion processi.e. the probability to draw each facies at a nadeonditioned by the
simulated nodes in the search template centerad at

Fig. 1 Training image and
search template

1
41u|2
3
Fig. 2 List for the training B
image and the search template List elements
of the Fig. 1, with thg search Lo = ((07 0,1, 1), (07 1))
terr]plate alwa_ly_s er_mrely L, — ((0 1,0,1),(0,2))
inside the training image, 1 7 A
facies code 0 for white node Ly =((0,1,1,0),(0,2))
and facies code 1 for gray Ls =((0,1,1,1),(1,0))
nodes Ls =((1,0,0,0),(1,0))
Ls =((1,0,0,1),(0,2))
L¢ =((1,0,1,0),(1,1))
L; =((1,0,1,1),(1,0))
Ls =((1,1,0,1),(0,2))
Ly =((1,1,1,0),(1,1))

3 Indexing thelist by atree

The simulation of a node requires to retrieve the countectof each element of
the list for which the data evewtis compatible with the already simulated nodes
in the search templatg(u). To do this, the list is scanned entirely. To avoid an ex-
haustive scan of the list, the idea is to index the list by a.tféhe list is sorted
lexicographically according to the data events and thedbras of the tree are de-
fined according to the facies code of the data event as fordhal search tree in
snesim|[5], and the cells of the tree contains the range of the cpording elements

in the lists. For a situation witM facies, the tree is abl-ary tree made up of cells
divided inM sub-cells which can have a child cell. If the levels in the taee num-
bered from 1 and the sub-cells in a cell from OMo- 1, one can locate a sub-cell
by a path{i(1),i(2),...,i(k)} in the treej(j) being the identification number of a

4 J. Straubhaar and A. Walgenwitz

sub—cell in a cell of levej. At the location given by the above path, the sub-cell
contains the index of the first element in the list for which thata evend begins

by i(1),i(2),...,i(k), and one plus the index of the last of those elements. Such a
tree can be cut everywhere and is useful for reducing theerahthe elements of

the list that must be scanned to retrieve the counters aicgpiola given data event
partially informed. An example for the list of the Fig. 2 ivgh in the Fig. 3.

0- -10
-1 | 1-4

4-8 | 8-10

+_1

4-6 6-8

Fig. 3 Tree indexing the list
of the Fig. 2

4 14

0

3.1 Controlling the size of the tree

Two parameters allows to control the size of the tree:

e dmax: maximal depth of the tree,
e Smx. Maximal size for the sub-lists given by the leaves of the.tre

Note that the depth of the tree is defined as the number olevielus one, and that
the root of the tree is on level 1. Then, the tree is built byeesing the following
rule.

A sub-cell in the tree has a child cell if and only if it is in avé] < 1+ dyux
and the size of the sub-list given by its indices is greaten f3ay.

Note that ifdmex > N — 1, whereN is the size of the search template, then there
is no constraint on the depth of the tree. The paransgtgimust be greater or equal
to 1. For the tree of the Fig. 3, the paramesigy is set to 3 and the paramethay
to a number greater or equal to 2.

Mixing Tree and List Structures for MPS Simulations 5

4 Numerical tests

In this section, the new approach is tested (with serial rodéwvo examples involv-
ing two training images. The paramethiy is set to a big number so that only the
parametesnx is relevant in the previous rule for building the indexingdr Then,
we retrieve the real time spent for 10 realizations and theamg load when using
the new algorithm for varying values &fx and when using the pure list-based
algorithm. Note that the realizations obtained are the damall tests.

(a) (b)
{5(1,487.6)
=3 8 1 4(2,207.5)
N
= - 3,128.8)
L 4 54, 92.5)
© B o |
581 20
S £R1
£ €
o | £ |
£ ©
= < £
o
©
o~
o
<
-
. (40.309) : : : : : : :
0 100 200 300 400 0 100 200 300 400

Smax Smax

Fig. 4 Time and memory requirements for the new algorithm (vdthy = 99) compared to the
pure list-based algorithm, for example (1); (a) real tim@ercent of the reference time (list-based
algorithm), as a function ddyay; (b) additional amount of memory used for storing the indgxi
trees in percent of the amount of memory needed for the &ista function ofmnax (logarithm-scale
for vertical axis); the points for first values and for the miom real time are shown in (a) and (b)

We consider the two examples:

(I 2D training image of size 258 250 with 2 facies, simulation grid of size 360
300, 3 multi-grids, and disc-shape search templates ¢ontall00, 60 and 20
nodes from the coarse multi-grid to the fine one;

(1) 3D training image of size 108 100x 60 with 4 facies, simulation grid of size
50x 50x 40, 3 multi-grids, and spherical search templates comgibiLl4, 256
and 32 nodes from the coarse multi-grid to the fine one.

The pure list-based algorithm is considered as the refetréfite real time ob-
tained when using the new algorithm is expressed in perdaheaeference time
(list-based algorithm) and the additional amount of memussd for storing the in-
dexing trees in percent of the amount of memory needed fdidtse These results
are plotted as a function of the paramedgy in the Figs. 4 and 5 for the examples
(I) and (I1) respectively. The values for time and for memasage are plotted on
a same graph in the Fig. 6. For the two examples, a similanketrais observed

J. Straubhaar and A. Walgenwitz

Q o |
— | =5
-
o S |
-9 « O
o <k
o N
5o £
K ® ~ o
£ gu)"
o
ES3 s
- Zo|
° T -
< |
N
L4 : : : : : : o : : : : : :
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Smax Smax

Fig. 5 Time and memory requirements for the new algorithm (with = 513) compared to the
pure list-based algorithm, for example (l1); (a) real timgercent of the reference time (list-based
algorithm), as a function dfyy; (b) additional amount of memory used for storing the indgxi
trees in percent of the amount of memory needed for the &ista function ofmnax (logarithm-scale
for vertical axis); the points for first values and for the miom real time are shown in (a) and (b)

(a) (b)

(487.6,112.3) o (174.2,125.6)
Q4
o -
(=)
- S
— « 27 (108.5, 99.0)
<t <
s (207.5, 78.8) 5o | (76.3, 82.5)
3 K®
£ £
Q Q
£33 E£81
o |
o | <
<
— ; ; T . IS, . —— T
1 2 5 20 50 200 0.2 1.0 5.0 20.0 100.0
add. mem. in % of ref add. mem. in % of ref

Fig. 6 Time VS memory requirements for the new algorithm (loganitbcale for horizontal axis);

(@) results for example (1) (Fig. 4); (b) results for exam@ilg (Fig. 5); the points for first values
and for the minimum real time are shown in (a) and (b)

Mixing Tree and List Structures for MPS Simulations 7

(similar curve shapes). In the two cases, the Fig. 6 showtdtikaspent time can be
divided by 3 for an additional amount of memory of less thanrBtdted to the pure
list-base algorithm.

Note that when using classical search trees (@aeésm [5]), we approximately
obtain a real time of 140% and 90% of the reference real timéhexamples (1)
and (Il) respectively, whereas the memory load is multipbg a factor of more that
10 and 40 respectively.

5 Conclusions

The tests presented in this paper show that mixing list ael gtructures for stor-
ing multiple point statistics allows to significantly imm® multiple-point statistics
algorithms. The tree-based algorithm is limited becausé®important RAM us-
age. The list-based approach overcomes this RAM limitdbiainits serial version
is generally slower. Indexing the lists by trees allows fauastantial gain of time
resulting in better performances than tree-based algoritthile the RAM usage
remains low. Moreover, this new technique benefits from traltelization that can
be applied to the lists.

References

1. F. Guardiano and R. Strivastava. Multivariate geostesisbeyond bivariate moments. In
A. Soares, editoiGGeostatistics Troia, volume 1, pages 133-144. Kluwer Academic, Dordrecht,
1993.

2. A.Journel and T. Zhang. Necessity of a multiple-poinbpmodel.Math Geol, 38(5):591-610,
2006.

3. P.Renard. Stochastic hydrogeology: what professigral/ needGround Water, 45(5):531—
541, 2007.

4. J. Straubhaar, P. Renard, G. Mariethoz, R. Froidevawuk,GarBesson. An improved paral-
lel multiple-point algorithm using a list approachMath Geosci, 43:305-328, 2011. DOI:
10.1007/s11004-011-9328-7.

5. S. Strebelle. Conditional simulation of complex geotagjistructures using multiple-points
statistics.Math Geol, 34(1):1-21, 2002.

