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Abstract As the focus in spatial modeling has shifting towards generating 

multiple conditional realizations (posterior samples for Bayesians), issues have 

arisen regarding the nature of the uncertainty space spanned by these algorithms. 

In this paper, I propose a simple test to verify whether the space of these multiple 

realization is in fact consistent with the chosen theory by which the underlying 

algorithms were derived. Two examples of popular conditioning methods are 

investigated: sequential simulation and ensemble Kalman Filter (EnKF). 

What is internal consistency? 

In the statistical sciences, internal consistency is the extent to which tests or 

procedures assess the same characteristic, skill or quality. In the context of 

modeling uncertainty, I will therefore define internal consistency as the degree to 

which sampling methods honor the relationship between the unconditional model 

of uncertainty (prior) and conditional model of uncertainty (posterior) as specified 

under a (subjectively) chosen “theory” (for example: Bayes’ rule). The “tests” 

performed are then various different ways of sampling from the same (conditional 

or unconditional) distributions. If these distributions are related to each other via a 

theory, then such “tests” should yield similar results. In this work, I apply various 

such tests on popular modeling techniques using Bayes’ rule as the “theory” 

Testing internal consistency 

A simple test is designed for internal consistency between conditioning 

mechanism, theory and models of uncertainty. The test works as follows and 

applies to both Bayesian and frequentist views of modeling. We assume a forward 

model is given and has no uncertainty.  

 

In the Bayesian context, the test is as follows 

1. Sample a model muc from the prior f(m) 
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2. Generate data d using the forward model d=g(m) 

3. Sample a posterior model mc from f(m|d) 

4. Repeat steps 1-3 

5. Compare the set of mc with the prior set of muc 

 

For the frequentist view, a similar reasoning is followed  

1. Generate an realization muc using an unconditional algorithm 

2. Generate d from d=g(m) 

1. Generate a realization mc using the conditional algorithm 

2. Repeat steps 1-3 

3. Compare the set of mc with the prior set of muc 

 

What is the purpose? In repeating this workflow, we obtain multiple conditional 

models. The distribution of these conditional Earth model should be exactly the 

same as the unconditional or prior model, indeed, since we randomize the data in 

such a way that it is consistent with the prior, we should get back the prior:  
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Note that in this derivation we used the subjectively chosen “theory”, namely 

Bayes’ rule. 
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Figure 1: (A) training image, (B) single hard data location, (C) ensemble average of 

rejection sampler and (D) ensemble average with snesim 
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Example 1: conditional sequential simulation 

Often, conditional sequential simulation algorithms treat hard data different from 

previously simulated nodes, and hence due to the difference between the 

conditional and unconditional algorithms, internal inconsistency may be 

generated. Consider the simple example shown in Figure 1. A single hard 

conditioning data indicating channel is located in the center, see Figure 1B. A 

training image, Figure 1A, is given containing simple sinuous channels. Consider 

now conditioning first using a rejection sampler. 150 models are created that 

match the data. The rejection sampler uses the unconditional version of the 

algorithm, in this case snesim [3]. The ensemble average is provided in Figure 1C. 

Next, 150 models are created using the same snesim algorithm, but now the 

conditional version. Clearly the ensemble average in Figure 1D differs from the 

rejection sampler, meaning there exists an internal consistency problem between 

conditional and unconditional snesim. Why does this problem occur? Since snesim 

works with multi-grids, the single hard data needs to be relocated to the nearest 

coarse grid node. In case of reservoir modeling where the single well is a 

production well, this problem has considerable impact on flow predictions. A 

solution using a multi-resolution approach is presented in Honarkhah ([1], see also 

this conference). 

Example 2: Ensemble Kalman filter 

The formulation of the inverse problem from which the EnKF is derived requires a 

multi-Gaussian model for the variables and for the relationship between data and 

model variables to be linear. Consider an example inverse/conditioning problem in 

Figure 2. A simple injector and producer configuration is shown on a 31x31 grid. 

The data is the watercut over a period of 10 years. The prior is a set of realizations 

generated using a training image, see Figure 2C. To apply the EnKf method to 

these non-Gaussian fields and non-linear forward model, we use the metric 

ensemble Kalman filter [2], an adaptation of the ensemble Kalman filter 

performed after kernel transformation. Figure 3B shows the match of 30 posterior 

models. Consider now generating 30 history matched models using the rejection 

sampler. When comparing the conditional variance (CV) of the permeability fields 

generated using these two techniques, see Figure 3C,D, we notice the low variance 

of the ensemble Kalman filter as compared to the rejection sampler. Clearly, the 

linear and Gaussian hypothesis of the Kalman filter lead to internal inconsistency 

when applied to a non-linear and non-Gaussian problem (localization and 

increasing the ensemble does not solve the problem). In practice, this problem is 

hard to detect, since the models generated match the data and have similar patterns 

as the training image or prior models (see Figure 2E,D). 
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Figure 2: (A) location of injector and producer, (B) red=watercut data, grey = prior models, 

(C) training image (D) prior realization, (E) posterior metric EnKF realization. 
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Figure 3: (A) results of rejection sampler (10.000 simulations (grey)), (B) ) results of metric 

EnKF (30 simulations (grey)), (C) CV rejection sampler, (D) CV metric EnKF  
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